• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

超声滚压工艺参数对45钢表面完整性与冲击性能的影响

贾琦, 杜东兴, 孔金星, 刘思来, 彭照波, 杨全威

贾琦, 杜东兴, 孔金星, 刘思来, 彭照波, 杨全威. 超声滚压工艺参数对45钢表面完整性与冲击性能的影响[J]. 机械工程材料, 2024, 48(10): 28-34. DOI: 10.11973/jxgccl230504
引用本文: 贾琦, 杜东兴, 孔金星, 刘思来, 彭照波, 杨全威. 超声滚压工艺参数对45钢表面完整性与冲击性能的影响[J]. 机械工程材料, 2024, 48(10): 28-34. DOI: 10.11973/jxgccl230504
JIA Qi, DU Dongxing, KONG Jinxing, LIU Silai, PENG Zhaobo, YANG Quanwei. Effect of Ultrasonic Rolling Process Parameters on Surface Integrity and Impact Performance of 45 Steel[J]. Materials and Mechanical Engineering, 2024, 48(10): 28-34. DOI: 10.11973/jxgccl230504
Citation: JIA Qi, DU Dongxing, KONG Jinxing, LIU Silai, PENG Zhaobo, YANG Quanwei. Effect of Ultrasonic Rolling Process Parameters on Surface Integrity and Impact Performance of 45 Steel[J]. Materials and Mechanical Engineering, 2024, 48(10): 28-34. DOI: 10.11973/jxgccl230504

超声滚压工艺参数对45钢表面完整性与冲击性能的影响

基金项目: 

中国工程物理研究院机械制造工艺研究所统筹项目支持 

详细信息
    作者简介:

    贾琦(1999—),男,甘肃嘉峪关人,硕士研究生

    通讯作者:

    通信作者(导师):杜东兴高级工程师

  • 中图分类号: TG176

Effect of Ultrasonic Rolling Process Parameters on Surface Integrity and Impact Performance of 45 Steel

  • 摘要:

    设计了以静压力(400,800,1 200 N)、振幅(3,5,7 μm)、滚压道次(1,2,3)等超声滚压工艺参数为变量,表面粗糙度、残余应力、显微硬度和冲击吸收功为响应的的正交试验,研究了超声滚压参数对45钢表面完整性与冲击性能的影响。结果表明:随着静压力和振幅增加,试样的表面粗糙度增大,滚压道次影响较小;随静压力、振幅、滚压道次增加,试样的表面残余压应力略有增大;随着静压力与振幅增加,硬化层深度增大,随着滚压道次增加,硬化层深度先减小后增大;随着静压力和振幅增加,冲击吸收功先减小后增大,随滚压道次增加,冲击吸收功增大;对表面粗糙度、表面残余应力、硬化层深度和冲击吸收功影响最大的因素分别为振幅、静压力、静压力和滚压道次;最佳超声滚压工艺参数为静压力400 N、振幅7 μm、滚压3次,此时试样灰色关联度最大,表面完整性和冲击性能较好。

    Abstract:

    Ultrasonic rolling orthogonal tests were designed with static pressure (400, 800, 1 200 N), amplitude (3, 5, 7 μm), rolling pass (1, 2, 3) as variables, surface roughness, residual stress, microhardness and impact absorption work as response. The effect of ultrasonic rolling parameters on the surface integrity and impact properties of 45 steel was studied. The results show that with the increase of static pressure and amplitude, the surface roughness of the sample increased,and the effect of rolling pass was small. With the increase of static pressure, amplitude and rolling pass, the surface residual compressive stress of the sample increased slightly. The depth of hardened layer increased with the increase of static pressure and amplitude, and first decreased and then increased with the increase of rolling pass. The impact absorption work first decreased and then increased with the increase of static pressure and amplitude, and increased with the increase of rolling pass. The most influential factors of surface roughness, surface residual stress, hardened layer depth and impact absorption work were amplitude, static pressure, static pressure and rolling pass, respectively. The optimum ultrasonic rolling parameters were as follows: static pressure of 400 N, amplitude of 7 μm, rolling pass of 3. Under the eptimal parameters, the gray correlation degree of the sample was the largest, and the surface integrity and impact performance were good.

  • 图  1   试样表面粗糙度、硬化层深度、表面残余应力和冲击吸收功随工艺参数的变化趋势

    Figure  1.   Variation trend diagram of surface roughness (a), hardened layer depth (b), surface residual stress (c) and impact absorption energy (d) of sample with process parameters

    图  2   不同工艺参数超声滚压后试样的残余应力和显微硬度沿层深分布

    Figure  2.   Residual stress (a) and microhardness distribution (b) along layer depth of samples after ultrasonic rolling with different process parameters

    图  3   不同工艺参数超声滚压后试样的显微组织

    Figure  3.   Microstructure of samples after ultrasonic rolling with different process parameters

    图  4   灰色关联度响应图

    Figure  4.   Grey correlation response diagram

    表  1   正交试验因素和水平

    Table  1   Orthogonal experimental factors and levels

    水平静压力/N振幅/μm滚压道次
    140031
    280052
    31 20073
    下载: 导出CSV

    表  2   正交试验结果

    Table  2   Orthogonal experimental result

    试样编号静压力/N振幅/μm滚压道次表面粗糙度/μm表面残余应力/MPa硬化层深度/μm冲击吸收功/J
    1400310.13-513.913013.3
    2400520.07-509.311011.7
    3400730.13-512.019016.3
    4800320.10-523.219012.0
    5800530.06-556.415014.7
    6800710.08-557.227010.3
    71 200330.09-549.527012.7
    81 200510.09-521.035010.7
    91 200720.16-570.723013.7
    下载: 导出CSV

    表  3   性能方差分析

    Table  3   Variance analysis of performance

    指标方差来源方差分析平方和自由度均方F显著性
    表面粗糙度静压力0.002 06420.001 032
    振幅0.003 32720.001 6642.128 23显著
    滚压道次0.000 51720.000 259
    误差0.002 10920.001 054
    总误差0.004 6960.000 782
    表面残余应力静压力2 401.01621 200.5083.586 775显著
    振幅630.139 42315.069 7
    滚压道次112.366 8256.183 39
    误差1 265.7182632.859
    总误差2 008.2246334.704
    硬化层深度静压力29 600214 8004.826 087显著
    振幅1 866.6672933.333 3
    滚压道次8 266.66724 133.333
    误差8 266.66724 133.333
    总误差18 40063 066.667
    冲击断裂吸收功静压力4.174 18322.087 091
    振幅1.805 53120.902 765
    滚压道次15.137 3827.568 6913.244 772显著
    误差8.015 76824.007 884
    总误差13.995 4862.332 58
    下载: 导出CSV

    表  4   线性组合系数及权重结果

    Table  4   Linear combination coefficient and weight results

    名称主成分1主成分2综合得分系数权重/%
    特征根1.8721.240--
    方差解释率/%46.7930.99--
    静压力0.647 70.260 10.493 325.61
    表面残余应力0.565 60.458 90.523 127.16
    冲击断裂吸收功0.402 70.576 90.472 124.52
    表面粗糙度0.313 70.623 70.437 222.71
    下载: 导出CSV
  • [1] 刘明涛,汤铁钢. 爆炸加载下金属壳体膨胀断裂过程中的关键物理问题[J]. 爆炸与冲击,2021,41(1):11-22.

    LIU M T ,TANG T G. Key physical problems in the expanding fracture of explosively driven metallic shells[J]. Explosion and Shock Waves,2021,41(1):11-22.

    [2] 叶想平,李英雷,张祖根. 45钢薄壁圆柱管的冲击膨胀断裂机理研究[J]. 爆炸与冲击,2014,34(3):322-327.

    YE X P ,LI Y L ,ZHANG Z G. Mechanism of expanding fracture of 45 steel cylinder shells driven by modified SHPB[J]. Explosion and Shock Waves,2014,34(3):322-327.

    [3] 魏琦,贾云飞,杨晓峰,等. 表面超声滚压及渗氧复合强化对纯钛断裂韧性的影响[J]. 压力容器,2022,39(5):16-25.

    WEI Q ,JIA Y F ,YANG X F ,et al. Effects of ultrasonic surface rolling process and combined oxygen boost diffusion treatment on fracture toughness of pure titanium[J]. Pressure Vessel Technology,2022,39(5):16-25.

    [4] 王兴刚超声波滚压光整加工技术研究沈阳东北大学2015王兴刚. 超声波滚压光整加工技术研究[D]. 沈阳:东北大学,2015.

    WANG X GResearch on ultrasonic rolling finishing technologyShenyangNortheastern University2015WANG X G. Research on ultrasonic rolling finishing technology[D]. Shenyang:Northeastern University,2015.

    [5] 唐洋洋,李林波,王超,等. 超声表面滚压纳米化技术研究现状[J]. 表面技术,2021,50(2):160-169.

    TANG Y Y ,LI L B ,WANG C ,et al. Research status of USRP nanocrystallization technology[J]. Surface Technology,2021,50(2):160-169.

    [6] ZHANG K M ,LIU Y X ,LIU S ,et al. Coordinated bilateral ultrasonic surface rolling process on aero-engine blades[J]. The International Journal of Advanced Manufacturing Technology,2019,105(10):4415-4428.
    [7] ZHANG Q L ,HU Z Q ,SU W W ,et al. Microstructure and surface properties of 17-4PH stainless steel by ultrasonic surface rolling technology[J]. Surface and Coatings Technology,2017,321:64-73.
    [8] YE H ,SUN X ,LIU Y ,et al. Effect of ultrasonic surface rolling process on mechanical properties and corrosion resistance of AZ31B Mg alloy[J]. Surface and Coatings Technology,2019,372:288-298.
    [9] WANG Z ,XIAO Z Y ,HUANG C S ,et al. Influence of ultrasonic surface rolling on microstructure and wear behavior of selective laser melted Ti-6Al-4V alloy[J]. Materials,2017,10(10):1203.
    [10] REN K ,YUE W ,ZHANG H Y. Surface modification of Ti6Al4V based on ultrasonic surface rolling processing and plasma nitriding for enhanced bone regeneration[J]. Surface and Coatings Technology,2018,349:602-610.
    [11] ZHANG Y L ,LAI F Q ,QU S G ,et al. Effect of ultrasonic surface rolling on microstructure and rolling contact fatigue behavior of 17Cr2Ni2MoVNb steel[J]. Surface and Coatings Technology,2019,366:321-330.
    [12] LI L ,KIM M ,LEE S ,et al. Influence of multiple ultrasonic impact treatments on surface roughness and wear performance of SUS301 steel[J]. Surface and Coatings Technology,2016,307:517-524.
    [13] 耿纪龙,闫志峰,张红霞,等. 超声表面滚压处理对AZ31B镁合金组织和性能的影响[J]. 表面技术,2022,51(1):368-375.

    GENG J L ,YAN Z F ,ZHANG H X ,et al. Effect of ultrasonic surface rolling treatment on the structure and properties of AZ31B magnesium alloy[J]. Surface Technology,2022,51(1):368-375.

    [14] 陈蔚清,徐观明,崔紫依,等. 超声滚压处理7B85合金的显微组织和力学性能[J]. 有色金属科学与工程,2021,12(6):80-87.

    CHEN W Q ,XU G M ,CUI Z Y ,et al. Microstructure and mechanical properties of 7B85 alloy ultrasonic rolling treated 7B85 alloy[J]. Nonferrous Metals Science and Engineering,2021,12(6):80-87.

    [15] 屈盛官,吴志兵,张亚龙,等. 超声表面滚压加工对20CrMoH钢摩擦磨损性能的影响[J]. 表面技术,2022,51(2):211-222.

    QU S G ,WU Z B ,ZHANG Y L ,et al. Effect of ultrasonic surface rolling on friction and wear properties of 20CrMoH steel[J]. Surface Technology,2022,51(2):211-222.

    [16] 张飞,赵运才. 超声表面滚压处理对45钢摩擦学性能的影响及机理[J]. 机械工程材料,2017,41(8):44-48.

    ZHANG F ,ZHAO Y C. Influence of ultrasonic surface rolling processing on tribological performance of 45 steel and its mechanism[J]. Materials for Mechanical Engineering,2017,41(8):44-48.

    [17] DANG J Q ,AN Q L ,LIAN G H ,et al. Surface modification and its effect on the tensile and fatigue properties of 300M steel subjected to ultrasonic surface rolling process[J]. Surface and Coatings Technology,2021,422:127566.
    [18] WANG P C ,PAN Y Z ,LIU Y J ,et al. Research on surface properties of Ti-6Al-4V alloy by multi-ultrasonic rolling[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2021,235(21):5594-5602.
    [19] DANG J Q ,ZHANG H ,AN Q L ,et al. Surface integrity and wear behavior of 300M steel subjected to ultrasonic surface rolling process[J]. Surface and Coatings Technology,2021,421:127380.
    [20] CHENG Y J ,WANG Y S ,WANG Z J ,et al. Ultrasonic surface rolling strengthening and its parameter optimization on bearing raceway[J]. Materials and Design,2023,232:112156.
图(4)  /  表(4)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-20
  • 修回日期:  2024-09-12
  • 刊出日期:  2024-10-19

目录

    /

    返回文章
    返回