Effect of Ultrasonic Rolling Process Parameters on Surface Integrity and Impact Performance of 45 Steel
-
摘要:
设计了以静压力(400,800,1 200 N)、振幅(3,5,7 μm)、滚压道次(1,2,3)等超声滚压工艺参数为变量,表面粗糙度、残余应力、显微硬度和冲击吸收功为响应的的正交试验,研究了超声滚压参数对45钢表面完整性与冲击性能的影响。结果表明:随着静压力和振幅增加,试样的表面粗糙度增大,滚压道次影响较小;随静压力、振幅、滚压道次增加,试样的表面残余压应力略有增大;随着静压力与振幅增加,硬化层深度增大,随着滚压道次增加,硬化层深度先减小后增大;随着静压力和振幅增加,冲击吸收功先减小后增大,随滚压道次增加,冲击吸收功增大;对表面粗糙度、表面残余应力、硬化层深度和冲击吸收功影响最大的因素分别为振幅、静压力、静压力和滚压道次;最佳超声滚压工艺参数为静压力400 N、振幅7 μm、滚压3次,此时试样灰色关联度最大,表面完整性和冲击性能较好。
Abstract:Ultrasonic rolling orthogonal tests were designed with static pressure (400, 800, 1 200 N), amplitude (3, 5, 7 μm), rolling pass (1, 2, 3) as variables, surface roughness, residual stress, microhardness and impact absorption work as response. The effect of ultrasonic rolling parameters on the surface integrity and impact properties of 45 steel was studied. The results show that with the increase of static pressure and amplitude, the surface roughness of the sample increased,and the effect of rolling pass was small. With the increase of static pressure, amplitude and rolling pass, the surface residual compressive stress of the sample increased slightly. The depth of hardened layer increased with the increase of static pressure and amplitude, and first decreased and then increased with the increase of rolling pass. The impact absorption work first decreased and then increased with the increase of static pressure and amplitude, and increased with the increase of rolling pass. The most influential factors of surface roughness, surface residual stress, hardened layer depth and impact absorption work were amplitude, static pressure, static pressure and rolling pass, respectively. The optimum ultrasonic rolling parameters were as follows: static pressure of 400 N, amplitude of 7 μm, rolling pass of 3. Under the eptimal parameters, the gray correlation degree of the sample was the largest, and the surface integrity and impact performance were good.
-
-
表 1 正交试验因素和水平
Table 1 Orthogonal experimental factors and levels
水平 静压力/N 振幅/μm 滚压道次 1 400 3 1 2 800 5 2 3 1 200 7 3 表 2 正交试验结果
Table 2 Orthogonal experimental result
试样编号 静压力/N 振幅/μm 滚压道次 表面粗糙度/μm 表面残余应力/MPa 硬化层深度/μm 冲击吸收功/J 1 400 3 1 0.13 -513.9 130 13.3 2 400 5 2 0.07 -509.3 110 11.7 3 400 7 3 0.13 -512.0 190 16.3 4 800 3 2 0.10 -523.2 190 12.0 5 800 5 3 0.06 -556.4 150 14.7 6 800 7 1 0.08 -557.2 270 10.3 7 1 200 3 3 0.09 -549.5 270 12.7 8 1 200 5 1 0.09 -521.0 350 10.7 9 1 200 7 2 0.16 -570.7 230 13.7 表 3 性能方差分析
Table 3 Variance analysis of performance
指标 方差来源 方差分析平方和 自由度 均方 F 显著性 表面粗糙度 静压力 0.002 064 2 0.001 032 振幅 0.003 327 2 0.001 664 2.128 23 显著 滚压道次 0.000 517 2 0.000 259 误差 0.002 109 2 0.001 054 总误差 0.004 69 6 0.000 782 表面残余应力 静压力 2 401.016 2 1 200.508 3.586 775 显著 振幅 630.139 4 2 315.069 7 滚压道次 112.366 8 2 56.183 39 误差 1 265.718 2 632.859 总误差 2 008.224 6 334.704 硬化层深度 静压力 29 600 2 14 800 4.826 087 显著 振幅 1 866.667 2 933.333 3 滚压道次 8 266.667 2 4 133.333 误差 8 266.667 2 4 133.333 总误差 18 400 6 3 066.667 冲击断裂吸收功 静压力 4.174 183 2 2.087 091 振幅 1.805 531 2 0.902 765 滚压道次 15.137 38 2 7.568 691 3.244 772 显著 误差 8.015 768 2 4.007 884 总误差 13.995 48 6 2.332 58 表 4 线性组合系数及权重结果
Table 4 Linear combination coefficient and weight results
名称 主成分1 主成分2 综合得分系数 权重/% 特征根 1.872 1.240 - - 方差解释率/% 46.79 30.99 - - 静压力 0.647 7 0.260 1 0.493 3 25.61 表面残余应力 0.565 6 0.458 9 0.523 1 27.16 冲击断裂吸收功 0.402 7 0.576 9 0.472 1 24.52 表面粗糙度 0.313 7 0.623 7 0.437 2 22.71 -
[1] 刘明涛,汤铁钢. 爆炸加载下金属壳体膨胀断裂过程中的关键物理问题[J]. 爆炸与冲击,2021,41(1):11-22. LIU M T ,TANG T G. Key physical problems in the expanding fracture of explosively driven metallic shells[J]. Explosion and Shock Waves,2021,41(1):11-22.
[2] 叶想平,李英雷,张祖根. 45钢薄壁圆柱管的冲击膨胀断裂机理研究[J]. 爆炸与冲击,2014,34(3):322-327. YE X P ,LI Y L ,ZHANG Z G. Mechanism of expanding fracture of 45 steel cylinder shells driven by modified SHPB[J]. Explosion and Shock Waves,2014,34(3):322-327.
[3] 魏琦,贾云飞,杨晓峰,等. 表面超声滚压及渗氧复合强化对纯钛断裂韧性的影响[J]. 压力容器,2022,39(5):16-25. WEI Q ,JIA Y F ,YANG X F ,et al. Effects of ultrasonic surface rolling process and combined oxygen boost diffusion treatment on fracture toughness of pure titanium[J]. Pressure Vessel Technology,2022,39(5):16-25.
[4] 王兴刚超声波滚压光整加工技术研究沈阳东北大学2015王兴刚. 超声波滚压光整加工技术研究[D]. 沈阳:东北大学,2015. WANG X GResearch on ultrasonic rolling finishing technologyShenyangNortheastern University2015WANG X G. Research on ultrasonic rolling finishing technology[D]. Shenyang:Northeastern University,2015.
[5] 唐洋洋,李林波,王超,等. 超声表面滚压纳米化技术研究现状[J]. 表面技术,2021,50(2):160-169. TANG Y Y ,LI L B ,WANG C ,et al. Research status of USRP nanocrystallization technology[J]. Surface Technology,2021,50(2):160-169.
[6] ZHANG K M ,LIU Y X ,LIU S ,et al. Coordinated bilateral ultrasonic surface rolling process on aero-engine blades[J]. The International Journal of Advanced Manufacturing Technology,2019,105(10):4415-4428. [7] ZHANG Q L ,HU Z Q ,SU W W ,et al. Microstructure and surface properties of 17-4PH stainless steel by ultrasonic surface rolling technology[J]. Surface and Coatings Technology,2017,321:64-73. [8] YE H ,SUN X ,LIU Y ,et al. Effect of ultrasonic surface rolling process on mechanical properties and corrosion resistance of AZ31B Mg alloy[J]. Surface and Coatings Technology,2019,372:288-298. [9] WANG Z ,XIAO Z Y ,HUANG C S ,et al. Influence of ultrasonic surface rolling on microstructure and wear behavior of selective laser melted Ti-6Al-4V alloy[J]. Materials,2017,10(10):1203. [10] REN K ,YUE W ,ZHANG H Y. Surface modification of Ti6Al4V based on ultrasonic surface rolling processing and plasma nitriding for enhanced bone regeneration[J]. Surface and Coatings Technology,2018,349:602-610. [11] ZHANG Y L ,LAI F Q ,QU S G ,et al. Effect of ultrasonic surface rolling on microstructure and rolling contact fatigue behavior of 17Cr2Ni2MoVNb steel[J]. Surface and Coatings Technology,2019,366:321-330. [12] LI L ,KIM M ,LEE S ,et al. Influence of multiple ultrasonic impact treatments on surface roughness and wear performance of SUS301 steel[J]. Surface and Coatings Technology,2016,307:517-524. [13] 耿纪龙,闫志峰,张红霞,等. 超声表面滚压处理对AZ31B镁合金组织和性能的影响[J]. 表面技术,2022,51(1):368-375. GENG J L ,YAN Z F ,ZHANG H X ,et al. Effect of ultrasonic surface rolling treatment on the structure and properties of AZ31B magnesium alloy[J]. Surface Technology,2022,51(1):368-375.
[14] 陈蔚清,徐观明,崔紫依,等. 超声滚压处理7B85合金的显微组织和力学性能[J]. 有色金属科学与工程,2021,12(6):80-87. CHEN W Q ,XU G M ,CUI Z Y ,et al. Microstructure and mechanical properties of 7B85 alloy ultrasonic rolling treated 7B85 alloy[J]. Nonferrous Metals Science and Engineering,2021,12(6):80-87.
[15] 屈盛官,吴志兵,张亚龙,等. 超声表面滚压加工对20CrMoH钢摩擦磨损性能的影响[J]. 表面技术,2022,51(2):211-222. QU S G ,WU Z B ,ZHANG Y L ,et al. Effect of ultrasonic surface rolling on friction and wear properties of 20CrMoH steel[J]. Surface Technology,2022,51(2):211-222.
[16] 张飞,赵运才. 超声表面滚压处理对45钢摩擦学性能的影响及机理[J]. 机械工程材料,2017,41(8):44-48. ZHANG F ,ZHAO Y C. Influence of ultrasonic surface rolling processing on tribological performance of 45 steel and its mechanism[J]. Materials for Mechanical Engineering,2017,41(8):44-48.
[17] DANG J Q ,AN Q L ,LIAN G H ,et al. Surface modification and its effect on the tensile and fatigue properties of 300M steel subjected to ultrasonic surface rolling process[J]. Surface and Coatings Technology,2021,422:127566. [18] WANG P C ,PAN Y Z ,LIU Y J ,et al. Research on surface properties of Ti-6Al-4V alloy by multi-ultrasonic rolling[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2021,235(21):5594-5602. [19] DANG J Q ,ZHANG H ,AN Q L ,et al. Surface integrity and wear behavior of 300M steel subjected to ultrasonic surface rolling process[J]. Surface and Coatings Technology,2021,421:127380. [20] CHENG Y J ,WANG Y S ,WANG Z J ,et al. Ultrasonic surface rolling strengthening and its parameter optimization on bearing raceway[J]. Materials and Design,2023,232:112156.