Page 35 - 机械工程材料2024年第十一期
P. 35

王加康,等: Cr 2 O 3 掺杂BS-PMS-PZT大功率压电陶瓷的电学性能及温度稳定性


                         55                                       [7] EITEL R E,RANDALL C A,SHROUT T R,et al.
                                                                     Applied Physics,2005,38(9):1464-1469.

                         50
                        压电常数下降率/%  45                                New  high  temperature  morphotropic  phase  boundary
                                                                     piezoelectrics based on Bi(Me)O 3 -PbTiO 3  ceramics[J].
                         40
                                                                     Japanese  Journal  of  Applied  Physics,2001,40(10):
                         35
                                                                     5999.
                         30                                       [8] YIN H,WANG Y,KUANG B,et al. Phase transition

                             0  0.2  0.4  0.6  0.8  1.0              and  thermal  stability  of  5.4BiScO 3 - (94.6-x)PbZrO 3 -
                                 Cr 2 O 3 原子分数/%
                                                                     xPbTiO 3   ternary  system  with  excellent  piezoelectric
              图 7 从室温至 260 ℃ 不同 Cr 2 O 3 掺杂量 0.05BS-0.05PMS-0.9PZT
                                                                     properties[J]. Journal of Materials Science:Materials in
                             陶瓷的压电常数下降率
              Fig. 7 Decreasing rate of piezoelectric constant of 0.05BS-0.05PMS-  Electronics,2021,32(5):6047-6054.

                 0.9PZT ceramics with different Cr 2 O 3  doping amounts from      [9] SUN Q C,WANG L F,NIE Q. Study on the Cr-doped
                            room temperature to 260 ℃                PSN-PZN-PZT  quaternary  piezoelectric  ceramics[J].
                                                                     Materials  Science  and  Technology,2007,15(1):107-
              不断增大,相对密度先增大后减小。
                                                                     110.
                 (2)随着Cr 2 O 3 掺杂量的增加,陶瓷的压电常数

                                                                  [10] OMRAN K H,MOSTAFA M,ABD EL-SADEK M
              与机械品质因数均先升后降,介电损耗增大,机电                                 S,et  al.  Effects  of  Ca  doping  on  structural  and  optical
                                                                     properties of PZT nanopowders[J]. Results in Physics,
              耦合系数基本先增后减,居里温度降低。当Cr 2 O 3
              掺杂量为0.4%时,陶瓷的综合电学性能最佳,此时                               2020,19:103580.
              压电常数、机械品质因数、介电损耗、机电耦合系数                             [11] LI J,SUN Q. Effects of Cr 2 O 3  doping on the electrical

              和居里温度分别为390 pC · N        −1 ,861,0.39%,0.55,          properties and the temperature stabilities of PZT binary
                                                                     piezoelectric  ceramics[J]. Rare  Metals,2008,27(4):
              295 ℃。
                                                                     362-366.
                 (3) 从室温至260 ℃,掺杂0.4%Cr 2 O 3 陶瓷的压

                                                                  [12] VINILA V S,JACOB R,MONY A,et al. XRD studies
              电常数下降率为32%,低于DM-8型商用PZT-8改
                                                                     on nano crystalline ceramic superconductor PbSrCaCuO
              性压电陶瓷(53%) ,该陶瓷具有良好的温度稳定性。                             at  different  treating  temperatures[J]. Crystal  Structure
                                                                     Theory and Applications,2014,3(1):1-9.
              参考文献:

                                                                  [13] HUAN  Y,WANG  X  H,FANG  J,et  al.  Grain  size
                [1] UCHINO  K.  Ferroelectric  Devices[M]. New  York:  effect  on  piezoelectric  and  ferroelectric  properties  of

                   CRC Press,2018.                                   BaTiO 3   ceramics[J]. Journal  of  the  European  Ceramic
                [2] PUOZA  J  C,SAKTHIVELSAMY  R.  Ultrasonic        Society,2014,34(5):1445-1448.

                   motors structural design and tribological performance:A     [14] 孙目珍. 电介质物理基础 [M]. 广州:华南理工大学出

                   review[J]. Tribology Online,2021,16(4):286-298.   版社,2000.
                [3] ZHAO  C  S.  Ultrasonic  Motors:Technologies  and       SUN  M  Z.  Fundamentals  of  dielectric  physics[M].

                   applications[M]. Berlin,Heidelberg:Springer  Berlin   Guangzhou:South  China  University  of  Technology
                   Heidelberg,2011.                                  Press,2000.

                [4] ZHANG  H  Z,ZHOU  J,SHEN  J,et  al.  Thermally     [15] 殷之文. 电介质物理学 [M]. 2版. 北京:科学出版社,

                   induced  transitions  and  depolarization  of  Fe 2 O 3   doped   2003.
                   PMnS-PZN-PZT  piezoelectric  ceramics[J]. Applied       YIN  Z  W.  Dielectric  physics[M]. 2nd  ed.  Beijing:
                   Physics A,2021,127(5):313.                        Science Press,2003.
                [5] CHEN  Z  R,LIANG  R  H,ZHANG  C,et  al.  High-    [16] ZHAO C H,GAO S,YANG T N,et al. Precipitation


                   performance  and  high-thermally  stable  PSN-PZT   hardening  in  ferroelectric  ceramics[J]. Advanced
                   piezoelectric  ceramics  achieved  by  high-temperature   Materials,2021,33(36):2102421.
                   poling[J]. Journal of Materials Science & Technology,    [17] CHEN  Y,XU  J  G,XU  Q,et  al.  Ferroelastic  domain

                   2022,116:238-245.                                 switching and R-curve behavior in lead zirconate titanate
                [6] ZHU  Z  G,LI  G  R,XU  Z  J,et  al.  Effect  of  PMS   (Zr/Ti=52/48) -based ferroelectric ceramics[J]. Journal

                   modification on dielectric and piezoelectric properties in   of the American Ceramic Society,2020,103(2):1067-
                   xPMS- (1−x)PZT  ceramics[J]. Journal  of  Physics  D   1078.

                                                                                                           27
   30   31   32   33   34   35   36   37   38   39   40