• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
XU Liang, ZHANG Xiao-hu, HUANG Jin-guo, FANG Guo-ai, JIANG Hui-feng, LI Shu-rui. Continuous Cooling Transformation Microstructure and Strength-Toughness of 700 MPa Low Carbon Microalloyed Steel[J]. Materials and Mechanical Engineering, 2015, 39(6): 29-35. DOI: 10.11973/jxgccl201506007
Citation: XU Liang, ZHANG Xiao-hu, HUANG Jin-guo, FANG Guo-ai, JIANG Hui-feng, LI Shu-rui. Continuous Cooling Transformation Microstructure and Strength-Toughness of 700 MPa Low Carbon Microalloyed Steel[J]. Materials and Mechanical Engineering, 2015, 39(6): 29-35. DOI: 10.11973/jxgccl201506007

Continuous Cooling Transformation Microstructure and Strength-Toughness of 700 MPa Low Carbon Microalloyed Steel

More Information
  • Received Date: April 19, 2015
  • Gleeble-3500 thermo-simulation machine was employed to determine the continuous cooling transformation (CCT) curves of 700 MPa low carbon microalloyed steel. The effects of cooling rate on phase transition behavior and microstructure were investigated. The results indicate that the CCT curves were in flat shape and the low carbon bainite structure was obtained in a large cooling rate range. The cooling rates had great effects on the form, proportion, distribution and micro-hardness of phases. The microstructure in experimental steel were changed from polygonal ferrite, acicular ferrite, granular bainite to lathe bainite with micro-hardness increasing when cooling rate became faster. When the cooling rate was between 10 ℃·s-1 and 30 ℃·s-1, the microstructure of the experimental steel was mainly compound of lathe bainite, and the M/A constituents dispersed on the grain boundaries. Futhermore, the size of lathe bainite became smaller with the cooling rate increasing. Therefore controlling the intermediate temperature transformation products using a proper cooling process could improve comprehensive mechanical property of experimental steel on the basis of analyzing of its phase transition characteristics.
  • [1]
    CABALLERO F G, SANTOFIMIA M J, CAPDEVILA C, et al. Design of advanced bainite steels by optimization of TTT diagrams and T0 curves[J]. ISIJ International, 2006, 46(10): 1479-1488.
    [2]
    王有铭, 李曼云, 韦光.钢铁的控制轧制和控制冷却[M]. 北京: 冶金工业出版社, 2009.
    [3]
    贺信莱, 尚成嘉, 杨善武. 高性能低碳贝氏体钢-成分、工艺、组织、性能与应用[M]. 北京: 机械工业出版社, 2008: 152.
    [4]
    BARBACKI A, MIKOLAJSKI E. Optimization of heat treatment conditions for maximum toughness of high strength silicon steel[J].Journal of Materials Processing Technology, 1998, 78(1): 18-23.
    [5]
    王国栋. 新一代控制轧制和控制冷却技术与创新的热轧过程[J]. 东北大学学报: 自然科学版, 2009, 30(7): 913-922.
    [6]
    胡良均, 尚成嘉, 王学敏, 等. 弛豫-析出-控制相变技术中冷却速度对组织的影响[J]. 北京科技大学学报, 2004, 26(3): 260-263.
    [7]
    雍岐龙.钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006: 145.
    [8]
    段修刚, 蔡庆伍, 武会宾. Ti-Mo全铁素体基微合金高强钢纳米尺度析出相[J]. 金属学报, 2011, 47(2): 251-256.
    [9]
    RODRIGUES P C M, PERELOMA E V, SANTOS D B. Mechanical properties of HSLA bainitic steel subjected to controlled rolling with accelerated cooling[J]. Materials Science and Engineering: A, 2000, 283: 136-143.
    [10]
    尚成嘉, 王学敏, 杨善武, 等. 高强度低碳贝氏体钢的工艺与组织细化[J]. 金属学报, 2003, 39(10): 1019-1024.
    [11]
    ABALLERO F G, SANTOFIMIA M J, CHAO J, et al. Theoretical design and advanced microstructure in super high strength steels[J].Materials and Design, 2009, 30(16): 2077-2083.
    [12]
    ZHOU Yun-long, LUO Dong-mei. Microstructure and mechanical properties of Ti-Mo alloys cold-rolled and heat treated[J]. Materials Characterization, 2011, 62(10): 931-937.
    [13]
    赵文龙, 孙蓟泉, 武会宾, 等. 孙薇高强度钢Q800厚板在不同状态下的组织、性能和析出物形貌[J]. 机械工程材料, 2013, 37(4): 22-25.
    [14]
    徐亮, 王利, 章敏, 等. 汽车罐车用17MnNiVNbR钢板的性能[J]. 机械工程材料, 2014, 38(5): 52-56.
    [15]
    周洪宝, 蔡庆伍, 武会宾, 等. 连续缓慢冷却贝氏体转变特征及合金元素分布的影响[J]. 材料工程, 2011, (12): 10-15.
    [16]
    SAHA PODDER A, BHADESHIA H K D H. Thermal stability of austenite retained in bainitic steels[J]. Materials Science and Engineering: A, 2010, 527: 2121-2128.
    [17]
    刘宗昌, 任慧平. 过冷奥氏体扩散型相变[M]. 北京: 科学出版社, 2007: 79.
    [18]
    YOU Yang, SHANG Chen-jia, NIE Wen-jin, et al. Investigation on the microstructure and toughness of coarse grained heat affected zone in X-100 multi-phase pipeline steel with high Nb content[J]. Materials Science and Engineering: A, 2012, 558: 692-701.
    [19]
    张小立. 再加热工艺对X100管线钢组织和性能的影响[J]. 机械工程材料, 2013, 37(7): 6-9.
    [20]
    梁宇, 石芷伊, 梁益龙. 钒含量对不同冷速冷却后高碳珠光体钢显微组织的影响[J]. 机械工程材料, 2013, 37(8): 19-22.
    [21]
    高宽, 王六定, 朱明, 等. 低合金超高强度贝氏体钢的晶粒细化与韧性提高[J]. 金属学报, 2007, 43(3): 315-320.
    [22]
    陈林恒, 康永林, 黎先浩. 回火温度对600MPa 级低碳贝氏体钢组织和力学性能的影响[J]. 北京科技大学学报, 2009, 31(8): 983-987.
    [23]
    余灿生, 赵昆渝, 贾书君, 等. 调质工艺对C95石油套管用钢组织的影响[J]. 机械工程材料, 2014, 38(2): 2-6.
    [24]
    尚成嘉, 杨善武, 王学敏, 等. 新颖的铁素体/贝氏体双相低碳微合金钢[J]. 北京科技大学学报, 2003, 25(3): 288-290.
    [25]
    CABALLERO F G, CHAOA J, CORNIDEA J, et al. Toughness deterioration in advanced high strength bainitic steels[J].Materials Science and Engineering: A, 2009, 525: 87-95.

Catalog

    Article views (3) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return