• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
LIU Long-long, ZHAO Ling-yan, WANG Ji-liang, XUAN Jian-wei, ZHU Ding-yi. Influence of Non-metallic Inclusions on Tensile Properties in High Carbon Copper-Bearing TWIP Steel[J]. Materials and Mechanical Engineering, 2015, 39(8): 59-64. DOI: 10.11973/jxgccl201508013
Citation: LIU Long-long, ZHAO Ling-yan, WANG Ji-liang, XUAN Jian-wei, ZHU Ding-yi. Influence of Non-metallic Inclusions on Tensile Properties in High Carbon Copper-Bearing TWIP Steel[J]. Materials and Mechanical Engineering, 2015, 39(8): 59-64. DOI: 10.11973/jxgccl201508013

Influence of Non-metallic Inclusions on Tensile Properties in High Carbon Copper-Bearing TWIP Steel

More Information
  • Received Date: April 05, 2015
  • The tensile properties of high carbon copper-bearing TWIP steel with different contents of non-metallic inclusions and distribution of size were compared to study the effect of non-metallic inclusions on tensile properties. The results show that non-metallic inclusions in the TWIP steel became the nucleation points of cavities under tensile load, leading to the early initiation of cavities. But the nucleation and growth of cavities were delayed because the TWIP steel was easy to form twinning and had high strain hardening rate. Besides, as a result of plastic fracture without necking, the tensile properties of the steel had a high level of tolerance for non-metallic inclusions. While the area fraction of the non-metallic inclusions in the TWIP steel raised from 0.171% to 0.394% and the surface density of the inclusions in equivalent diameter above 5 μm improved from 4 to 29, the various tensile properties such as tensile strength and elongation only reduced by 1% to 3%, showing good tensile properties.
  • [1]
    LEE T Y, KOYAMA M, TSUZAKI K, et al. Tensile deformation behavior of Fe-Mn-C TWIP steel with ultrafine elongated grain structure[J]. Materials Letters, 2012, 75(1): 169-171.
    [2]
    DANCETTE S, DELANNAY L, RENARD K, et al. Crystal plasticity modeling of texture development and hardening in TWIP steels[J]. Acta Materialia, 2012, 60(1): 2135-2145.
    [3]
    闫彬,卫英慧,马丽莉. TWIP钢激光和TIG焊接接头的组织和性能[J]. 机械工程材料, 2013, 37(2): 78-85.
    [4]
    张旺峰,朱金华,曹春晓. 奥氏体锰钢高应变速率孪生诱导塑性[J]. 机械工程材料, 2005, 29(3): 14-17.
    [5]
    LIU H J, ZHU D Y, PENG X. Dynamic strain aging in the Fe-Mn-Cu-C TWIP steels[J]. Advanced Materials Research, 2013, 668(1): 861-864.
    [6]
    刘海军, 朱定一, 胡真明, 等. 热轧工艺对Fe-20Mn-3Cu-1.3 C TWIP 钢组织致密度和力学性能的影响[J]. 金属热处理, 2012, 37(8): 93-97.
    [7]
    PENG X, ZHU D Y, HU Z M, et al. Stacking fault energy and tensile deformation behavior of high-carbon twinning-induced plasticity steels: effect of Cu addition[J].Materials & Design, 2013, 45(1): 518-523.
    [8]
    张德堂. 钢中非金属夹杂物鉴别[M]. 北京: 国防工业出版社, 1991: 5-255.
    [9]
    吕炎. 锻造工艺学[M]. 北京: 机械工业出版社, 1995: 5-27.
    [10]
    WANG A, THOMSON P F, HODGSON P D. A study of pore closure and welding in hot rolling process [J]. Journal of Materials Processing Technology, 1996, 60(1/4): 95-102.
    [11]
    周小芬, 符仁钰, 李麟. Fe24Mn0.5C形变孪晶诱发塑性钢的显微组织和力学性能[J]. 机械工程材料, 2009, 33(5), 22-25.
    [12]
    ALLAIN S, CHATEAU J P, DAHMOUN D, et al. Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys[J]. Materials Science and Engineering: A, 2004, 387/389: 158-162.
    [13]
    BOUAZIZ O, ALLAIN S, SCOTT C P, et al. High manganese austenitic twinning induced plasticity steels: a review of the microstructure properties relationships[J]. Current Opinion in Solid State and Materials Science, 2011, 15: 141-168.
    [14]
    鲁法云, 杨平, 孟利, 等. Fe-22Mn TRIP/TWIP钢拉伸过程组织、性能及晶体学行为分析[J]. 金属学报, 2013, 49(1): 1-9.
    [15]
    姜锡山, 赵晗. 钢铁显微断口速查手册[M]. 北京: 机械工业出版社, 2010: 8-17.
    [16]
    文九巴, 杨蕴林, 杨永顺, 等. 超塑性应用技术[M]. 北京: 机械工业出版社, 2005: 15-45.
    [17]
    管志平, 马品奎, 宋玉泉. 超塑性断裂分析[J]. 金属学报, 2013, 49(8): 1003-1011.

Catalog

    Article views (4) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return