• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
XU Ran, LUO Feng-hua, WANG Zhu-bo. Microstructure and Properties of Co39Ni34Al27 Shape Memory Alloy after Quenching at Different Temperatures[J]. Materials and Mechanical Engineering, 2016, 40(5): 62-66. DOI: 10.11973/jxgccl201605012
Citation: XU Ran, LUO Feng-hua, WANG Zhu-bo. Microstructure and Properties of Co39Ni34Al27 Shape Memory Alloy after Quenching at Different Temperatures[J]. Materials and Mechanical Engineering, 2016, 40(5): 62-66. DOI: 10.11973/jxgccl201605012

Microstructure and Properties of Co39Ni34Al27 Shape Memory Alloy after Quenching at Different Temperatures

More Information
  • Received Date: February 24, 2016
  • The microstructure, martensitic transformation, pseudoelasticity and damping properties of the Co39Ni34Al27 alloy quenched at different temperatures from 1 200 to 1 350 ℃ were investigated by optical microscopey, differential scanning calorimetry, cyclic tensile test and damping test. The results show that with the increase of quenching temperature, the grain size of the alloy increased, the γ phase content decreased and the β phase was gradually transformed into martensite phase. The martensite transformation temperatures were almost linearly proportional to the quenching temperatures. The alloy quenched at 1 250 ℃ showed a significant pseudoelasticity performance. The damping capacity of the alloy after quenching at 1 250 ℃ and 1 320 ℃ reached the peak values during the martensitic transformation, which were 0.042 and 0.035 respectively. The damping capacity of the alloy quenched at 1 320 ℃ was larger than that at 1 250 ℃.
  • [1]
    商泽进, 王忠民, 冯振宇, 等.含形状记忆合金的智能材料结构的应用[J].稀有金属材料与工程, 2007, 36(z3): 163-167.
    [2]
    LOPEZ G A, BARRADO M, JUAN J S, et al.Mechanical spectroscopy measurements on SMA high-damping composites[J].Materials Science and Engineering: A, 2009, 521: 359-362.
    [3]
    KARACA H E, KARAMAN I, LAGOUDAS D C, et al.Recoverable stress-induced martensitic transformation in a ferromagnetic CoNiAl alloy[J].Scripta Materialia, 2003, 49(9): 831-836.
    [4]
    刘剑.Co基铁磁形状记忆合金的凝固控制和固态相变特征[D].上海: 上海交通大学, 2006.
    [5]
    周正存, 杜洁, 张义平, 等.油淬Ni64Al36合金的逆马氏体相变[J].机械工程材料, 2014, 38(12): 46-49, 77.
    [6]
    KOSITSYNA I I, ZAVALISHIN V A.Study of Co-Ni-Al alloys with magnetically controlled shape memory effect[J].Materials Science Forum, 2010, 635: 75-80.
    [7]
    OIKAWA K.Promising ferromagnetic Ni-Co-Al shape memory alloy system[J].Applied Physics Letters, 2001, 79(20): 3290-3292.
    [8]
    罗丰华, 陈嘉砚, 刘浪飞.Sb添加对(β+γ)双相Co-Ni-Al形状记忆合金马氏体相变和磁性的影响[J].金属学报, 2009, 42(8): 785-791.
    [9]
    王海龙, 周健, 朱治愿.CuAlBeB形状记忆合金冷却方式研究[J].机械工程材料, 2005, 29(9): 54-57.
    [10]
    赵连城, 蔡伟, 郑玉峰.合金的形状记忆效应与超弹性[M].北京: 国防工业出版社, 2002.
    [11]
    阚前华, 康国政, 钱林茂, 等.超弹性NiTi合金相变棘轮行为的实验研究[J].金属学报, 2008, 44(8): 949-955.
    [12]
    HANUS S, KOPEEK J, SEDLAK P, et al.Microstructure, martensitic transformation and anomalies in c′-softening in Co-Ni-Al ferromagnetic shape memory alloys[J].Acta Materialia, 2013, 61(15): 5869-5876.
    [13]
    JUAN J S, NO M L.Damping behavior during martensitic transformation in shape memory alloys[J].Journal of Alloys and Compounds, 2003, 355(1): 65-71.
    [14]
    LIU J, LI J G.Microstructure, shape memory effect and mechanical properties of rapidly solidified Co-Ni-Al magnetic shape memory alloys[J].Materials Science and Engineering: A, 2007, 454/455: 423-432.
    [15]
    赵连城, 蔡伟, 郑玉峰.合金的形状记忆效应与超弹性[M].北京: 国防工业出版社, 2002.

Catalog

    Article views (2) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return