Citation: | HU Meng, XU Xiao-yan, ZHANG Le-fu. Influence of Heat Treatment on Fatigue Crack Growth Rate of As-cast Nickel-Aluminum Bronze[J]. Materials and Mechanical Engineering, 2016, 40(10): 79-84. DOI: 10.11973/jxgccl201610018 |
[1] |
宋德军, 胡光远, 卢海, 等. 镍铝青铜合金的应用与研究现状[J]. 材料导报, 2007, 21(s3): 450-452.
|
[2] |
张化龙. 国内外镍铝青铜螺旋桨材料在舰船上的应用[J]. 机械工程材料, 1996, 20(1): 33-35.
|
[3] |
CZYRYCA E J. Corrosion fatigue crack growth thresholds for cast nickel-aluminum bronze and welds[J]. ASTM Special Technical Publication, 2000, 1372: 319-340.
|
[4] |
WHARTON J A, BARIK R C, KEAR G, et al. The corrosion of nickel-aluminium bronze in seawater[J]. Corrosion Science, 2005, 47(12): 3336-3367.
|
[5] |
AL-HASHEM A, RIAD W. The role of microstructure of nickel-aluminium-bronze alloy on its cavitation corrosion behavior in natural seawater[J]. Materials Characterization, 2002, 48(1): 37-41.
|
[6] |
ANANTAPONG J, UTHAISANGSUK V, SURANUNTCHAI S, et al. Effect of hot working on microstructure evolution of as-cast nickel aluminum bronze alloy[J]. Materials & Design, 2014, 60: 233-243.
|
[7] |
CHOPRA O K, RAO A S. A review of irradiation effects on LWR core internal materials-IASCC susceptibility and crack growth rates of austenitic stainless steels[J]. Journal of Nuclear Materials, 2011, 409(3): 235-256.
|
[8] |
CULPAN E A, ROSE G. Microstructural characterization of cast nickelaluminium bronze[J]. Journal of Materials Science, 1978, 13(8): 1647-1657.
|
[9] |
PARIS P C, ERDOGAN F. A critical analysis of crack propagation laws[J]. Journal of Basic Engineering, 1963, 85(4): 528-533.
|
[10] |
WANG Y L, PAN Q L, WEI LL, et al. Effect of retrogression and reaging treatment on the microstructure and fatigue crack growth behavior of 7050 aluminum alloy thick plate[J]. Materials & Design, 2014, 55: 857-863.
|
[11] |
SINHA V, SOBOYEJO W O. An investigation of the effects of colony microstructure on fatigue crack growth in Ti-6Al-4V[J]. Materials Science and Engineering A, 2001, 319: 607-612.
|
[12] |
SURESH S. Fatigue crack deflection and fracture surface contact: micromechanical models[J]. Metallurgical Transactions A, 1985, 16(1): 249-260.
|
[13] |
YODER G R, COOLEY L A, CROOKER T W. Fatigue crack propagation resistance of beta-annealed Ti-6AI-4V alloys of differing interstitial oxygen contents[J]. Metallurgical Transactions A, 1978, 9(10): 1413-1420.
|
[14] |
PILCHAK A L. Fatigue crack growth rates in alpha titanium: faceted vs. striation growth[J].Scripta Materialia, 2013, 68(5): 277-280.
|