• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
ZHAO Guoxian, LI Ting, XIE Junfeng, LÜ Xianghong, XUE Yan, ZHONG Qiang. Effect of Applied Potential on Sulfide Stress Cracking Resistance and Hydrogen Permeation Behavior of C110 Steel[J]. Materials and Mechanical Engineering, 2017, 41(5): 11-16. DOI: 10.11973/jxgccl201705003
Citation: ZHAO Guoxian, LI Ting, XIE Junfeng, LÜ Xianghong, XUE Yan, ZHONG Qiang. Effect of Applied Potential on Sulfide Stress Cracking Resistance and Hydrogen Permeation Behavior of C110 Steel[J]. Materials and Mechanical Engineering, 2017, 41(5): 11-16. DOI: 10.11973/jxgccl201705003

Effect of Applied Potential on Sulfide Stress Cracking Resistance and Hydrogen Permeation Behavior of C110 Steel

More Information
  • Received Date: September 18, 2016
  • Revised Date: March 26, 2017
  • The effects of applied potential on the sulfide stress cracking (SSC) resistance and hydrogen permeation behavior of C110 steel and the cracking mechanisms were discussed by the SSC resistance test and hydrogen permeation test. The results show that when the loading stress was 85% of yield strength under no applied potential, C110 steel passed the test according to the NACE TM 0177-2016 standard method A indicating that C110 steel had a good SSC resistance performance. When -100 mV or +100 mV potential (relative to open circuit potential) was applied, fracture occured to the C110 steel samples and the SSC sensitivity was enhanced. When anodic potential was applied, the mechanism of cracking was related to anodic dissolution type. When cathodic potential was applied, the mechanism of cracking was related to cathodic hydrogen evolution type. With the growth of cathodic potential, the steady-state hydrogen permeation current density, the subsurface hydrogen concentration and the SSC sensitivity of C110 steel all increased.
  • [1]
    李娜,吕祥鸿,周鹏遥,等.HPHT井完井管柱材质研究及应用进展[J].材料导报,2015,29(9):95-99.
    [2]
    吕祥鸿,赵国仙,王宇,等.低铬抗硫套管的H2S/CO2腐蚀行为研究[J].钢铁研究学报,2010,22(7):23-28.
    [3]
    OMURA T, KOBAYASHI K, UEDA M. SSC resistance of high strength low alloy steel OCTG in high pressure H2S environments[J]. Physica Status Solidi B Basic Research, 2009, 122(2):501-508.
    [4]
    苗健,白真权,严文,等.模拟油田CO2/H2S环境P110钢的腐蚀行为研究[J].石油矿场机械,2004,33(6):53-56.
    [5]
    张星,李兆敏,马新忠,等.深井油管H2S应力腐蚀试验研究[J].石油勘探与开发,2004,31(6):95-97.
    [6]
    张清,李全安,文九巴,等.温度对油管钢CO2/H2S腐蚀速率的影响[J].材料保护,2004,37(4):38-39.
    [7]
    周琦,季根顺,张建斌,等.管线钢中的硫化物夹杂物与氢致开裂[J].材料工程,2002(9):37-39.
    [8]
    赵平.H2S腐蚀的影响因素[J].全面腐蚀控制,2002,16(3):8-9.
    [9]
    吕祥鸿.低Cr耐蚀管材的国内外研究进展[J].材料导报,2009,23(3):72-76.
    [10]
    曹长娥.提高压力容器用钢板耐酸性的组织控制和适用钢的特性[J].焊管,2000(7):54-59.
    [11]
    吴辉,任呈强,刘丽,等.不同因素对X52管线钢氢渗透行为的影响[J].机械工程材料,2015,39(5):23-26.
    [12]
    NACE TM 0177-2016. Standard test methods laboratory testing of metals for resistance to sulfide stress cracking and stress corrosion cracking in H2S environments[S]. Houston:NACE International,2016.
    [13]
    ASTM Standard G148-97(2003). Standard practice for evaluation of hydrogen uptake, permeation, and transport in metals by an electrochemical technique[S]. Washington:Springer US,2003.
    [14]
    张毅,高连新.耐腐蚀油井管开发与应用[M].北京:石油工业出版社,2014:41.
    [15]
    郦建立.炼油工业中H2S的腐蚀[J].腐蚀科学与防护技术,2000,12(6):346-349.
    [16]
    范长刚,董瀚,雍岐龙,等.低合金超高强度钢的研究进展[J].机械工程材料,2006,30(8):1-4.
    [17]
    谢飞,王丹,吴明,等.氢对X80钢在库尔勒土壤模拟溶液中应力腐蚀开裂行为的影响[J].中南大学学报(自然科学版),2016,47(2):690-696.
    [18]
    张亮,李晓刚,杜翠薇,等.外加电位对X70管线钢在库尔勒土壤模拟溶液中应力腐蚀开裂敏感性的影响[J].中国腐蚀与防护学报,2009,29(6):353-358.
    [19]
    吕祥鸿,赵国仙.油套管材质与腐蚀防护[M].北京:石油工业出版社,2015:38.
    [20]
    程远,俞宏英,王莹,等.外加电位对X80钢在玉门土壤模拟溶液中应力腐蚀的影响[J].材料工程,2014(8):55-60.
    [21]
    李勇峰.氢在钢中的渗透特性及镀层阻氢渗透机理的研究[D].上海:华东理工大学,2012.
    [22]
    李勇峰,蔡丽安,阚文彬,等.氢在低碳钢中的渗透扩散特性[J].华东理工大学学报(自然科学版),2013,39(2):222-227.

Catalog

    Article views (4) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return