• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
WU Yuemei, ZHOU Liming, XIONG Ji, YE Junliu, WEN Bin. Effect of WC and Mo2C Addition on Microhardness of Ti(C,N)-Based Cermets at High Temperature[J]. Materials and Mechanical Engineering, 2017, 41(7): 24-28,33. DOI: 10.11973/jxgccl201707005
Citation: WU Yuemei, ZHOU Liming, XIONG Ji, YE Junliu, WEN Bin. Effect of WC and Mo2C Addition on Microhardness of Ti(C,N)-Based Cermets at High Temperature[J]. Materials and Mechanical Engineering, 2017, 41(7): 24-28,33. DOI: 10.11973/jxgccl201707005

Effect of WC and Mo2C Addition on Microhardness of Ti(C,N)-Based Cermets at High Temperature

More Information
  • Received Date: August 08, 2016
  • Revised Date: May 17, 2017
  • Based on the similar effect of WC and Mo2C addition on microstructure optimizing and wettability improvement of Ti(C,N)-based cermets, the microhardness of Ti(C,N)-based cermets with WC or Mo2C addition was investigated at high temperature. The results show that the high-temperature microhardness of Ti(C,N)-based cermets with WC and Mo2C addition both decreased with the increase of temperature. At 600-800℃, the high-temperature microhardness of cermets containing WC was slightly higher than that of cermets with Mo2C and microhardness was almost the same at 900℃. The indentation area and average indentation depth of two cermets both increased with increase of temperature. The true strain of cermets with WC was significantly less than that of cermets with Mo2C addition, but high-temperature deformations of two cermets were nearly close at 900℃.
  • [1]
    KUMAR B V M, KUMAR J R, BASU B. Crater wear mechanisms of TiCN-Ni-WC cermets during dry machining[J]. International Journal of Refractory Metals and Hard Materials. 2007, 25(5):392-399.
    [2]
    赵亮培. 高速切削加工中刀具材料的合理选择[J]. 组合机床与自动化加工技术, 2009, 51(4):67-69.
    [3]
    BELLOSI A, CALZAVARINI R, FAGA M G, et al. Characterization and application of titanium carbonitride-based cutting tools[J]. Journal of Materials Processing Technology. 2003, 143(1):527-532.
    [4]
    铃木寿,林宏尔,松原秀彰. Ti(C,N)-Mo2C-Ni合金の烧結体表面部における組織変化[J]. 粉体およぴ粉末冶金,1982,29(2):58-61.
    [5]
    张幸红,赫晓东,区伟. 燃烧合成TiC-Ni材料的室温及高温力学性能[J].复合材料学报,2001,18(1):71-75.
    [6]
    刘玥. 新型Ti(C,N)基复合金属陶瓷刀具及其高温抗弯强度研究[D]. 济南:山东大学, 2015.
    [7]
    杨志峰,吕维洁,盛险峰,等. 原位合成钛基复合材料的高温力学性能[J]. 机械工程材料, 2004,28(3):22-27.
    [8]
    刘长青.机械制造技术[M].武汉:华中科技大学出版社,2005.
    [9]
    DONG G B, XIONG J, YANG M, et al. Effect of Mo2C on erosion-corrosion resistance behavior of Ti(C,N)-based cermets[J]. Wear, 2012, 294/295(3):364-369.
    [10]
    LIN Z H, XIONG J, GUO Z X, et al. Effect of addition on the microstructure and fracture behavior of (W,Ti)C-based cemented carbides[J]. Ceramic International, 2014, 40:16421-16428.
    [11]
    AHN S Y, KANG S H. Formation of core/rim structures in Ti(C,N)-WC-Ni cermets via a dissolution and reprecipitation process[J]. Journal of American Ceramic Society, 2000, 83(6):1489-1494.
    [12]
    LIU N, CHEN M H, XU Y D, et al. Wettability and bonding between Ni and Ti(C,N) with multiple carbide additions[J]. Journal of Materials Science and Technology, 2005, 21(1):53-59.
    [13]
    刘宁. Ti(C,N)基金属陶瓷材料[M]. 合肥:合肥工业大学出版社,2009.
    [14]
    戴鸿霞,熊惟皓,张国鹏, 等. TaC含量对Ti(C,N)基金属陶瓷抗热震性能的影响[J].机械工程材料,2012,36(12):10-13.
    [15]
    束德林.工程材料力学性能[M].北京:机械工业出版社,2016.
    [16]
    马向平, 王书义, 陈威, 等. 金属陶瓷在高温下的变形规律[J].北京科技大学学报, 2007, 29(2):220-225.
    [17]
    谭孟曦. 利用纳米压痕加载曲线计算硬度-压入深度关系及弹性模量[J]. 金属学报, 2005, 41(10):1020-1024.
    [18]
    BOLOGNINI S, FEUSIER G, MARI D, et al. TiMoCN-based cermets:high-temperature deformation[J]. International Journal of Refractory Metals and Hard Materials, 2003, 21(1/2):19-26.
    [19]
    CHIEN F R, NING X J, HEUER H. Slip systems and dislocation emission from crack tips in single crystal TiC at low temperatures[J]. Acta Materialia, 1996, 44(6):2265-2283.
    [20]
    WILLIAMS W S. Influence of temperature, strain rate, surface condition, and composition on the plasticity of transition-metal carbide crystals[J]. Journal of Applied Physics, 1964, 35(4):1329-1338.
    [21]
    陈景榕, 石沂平. 工具材料的高温硬度[J]. 北京科技大学学报, 1990(5):443-450.
    [22]
    COBLE R L. A model for boundary diffusion controlled creep in polycrystalline materials[J]. Journal of Applied Physics, 1963, 34(6):1679-1682.
  • Related Articles

    [1]LI Sijie, MENG Junsheng, CHEN Zhihui, HAO Chenfan, LI Qindong. Effect of Process Parameters on Dilution Rate and Microhardness of Argon Arc Cladding TiC+Al2O3/Ni Composite Coating[J]. Materials and Mechanical Engineering, 2024, 48(10): 35-40. DOI: 10.11973/jxgccl240190
    [2]XIA Yu, ZHANG Shitao, ZHANG Bowen, SHANGGUAN Fujun, LIU Fukang, DENG Weitao, LI Wenge, ZHAO Yuantao. Effect of WC Addition Amount on Microstructure and Corrosion Resistance of Mo2FeB2 Cermet Coating[J]. Materials and Mechanical Engineering, 2023, 47(12): 26-30. DOI: 10.11973/jxgccl202312005
    [3]FANG Ding, YU Ze, GOU Shaoxuan. Effect of AlxCoCrFeNi High-Entropy Alloy Binder on Microstructure and High-Temperature Oxidation Resistance of Ti(C,N)-Based Cermets[J]. Materials and Mechanical Engineering, 2023, 47(11): 51-56. DOI: 10.11973/jxgccl202311009
    [4]HUO Renjie, JIN Yuhua, WANG Guangshan, LI Hailong. Microhardness and Tensile Properties of Friction Stir Welded Joint of 2024 Aluminum Alloy at Different Welding Speeds[J]. Materials and Mechanical Engineering, 2019, 43(1): 50-53. DOI: 10.11973/jxgccl201901011
    [5]DI Yan, WANG Chang-chang, JIA Shu-jun, LIU Qing-you, PENG Ju-bo. Effect of Rolling Technology on Microstructure and Microhardness of Lowcost X80 Pipeline Steel[J]. Materials and Mechanical Engineering, 2015, 39(12): 51-54. DOI: 10.11973/jxgccl201512012
    [6]CHENG Yang, DONG Gang, CHEN Guo-xi, DEND Qi-lin. Effects of Niobium Element on Microstructure and Microhardness of Ni-based Alloy Laser Cladding Coating[J]. Materials and Mechanical Engineering, 2014, 38(9): 24-28.
    [7]JING Jing-nan, YU Zhi-shui, CHANG Wen-long, QIN You-qiong. Microstructure and Microhardness of 316L Stainless Steel Joint Seam Vacuum Brazed by BNi7 Ni-Based Filler Metal[J]. Materials and Mechanical Engineering, 2013, 37(1): 10-13.
    [8]SHEN Chen, XUE Yu-jun, KU Xiang-chen, LIU Yi, LI Ji-shun. Effect of Ultrasonic on Microstructure and Microhardness of Ni-ZrO2 Nanocomposite Coating[J]. Materials and Mechanical Engineering, 2010, 34(7): 80-83.
    [9]GUO Wei, WANG Kuai-she, WANG Feng, WANG Wen, WANG Wen-li. Effect of Heat Treatment on Microstructure and Microhardness of Friction Stir-welded Joints for AZ31B Magnesium Alloy[J]. Materials and Mechanical Engineering, 2009, 33(10): 33-36.
    [10]ZHONG Wancai, LIU Cheng, FANG Liangbin, LI Qiang, ZHAO Yuantao, ZHANG Shitao, LI Wenge. Effect of Process Parameters on Microhardness and Erosion Properties of Atmospheric Plasma Spraying Al2O3-13%TiO2 Composite Coating[J]. Materials and Mechanical Engineering. DOI: 10.11973/jxgccl230366

Catalog

    Article views (1) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return