Citation: | WU Yuemei, ZHOU Liming, XIONG Ji, YE Junliu, WEN Bin. Effect of WC and Mo2C Addition on Microhardness of Ti(C,N)-Based Cermets at High Temperature[J]. Materials and Mechanical Engineering, 2017, 41(7): 24-28,33. DOI: 10.11973/jxgccl201707005 |
[1] |
KUMAR B V M, KUMAR J R, BASU B. Crater wear mechanisms of TiCN-Ni-WC cermets during dry machining[J]. International Journal of Refractory Metals and Hard Materials. 2007, 25(5):392-399.
|
[2] |
赵亮培. 高速切削加工中刀具材料的合理选择[J]. 组合机床与自动化加工技术, 2009, 51(4):67-69.
|
[3] |
BELLOSI A, CALZAVARINI R, FAGA M G, et al. Characterization and application of titanium carbonitride-based cutting tools[J]. Journal of Materials Processing Technology. 2003, 143(1):527-532.
|
[4] |
铃木寿,林宏尔,松原秀彰. Ti(C,N)-Mo2C-Ni合金の烧結体表面部における組織変化[J]. 粉体およぴ粉末冶金,1982,29(2):58-61.
|
[5] |
张幸红,赫晓东,区伟. 燃烧合成TiC-Ni材料的室温及高温力学性能[J].复合材料学报,2001,18(1):71-75.
|
[6] |
刘玥. 新型Ti(C,N)基复合金属陶瓷刀具及其高温抗弯强度研究[D]. 济南:山东大学, 2015.
|
[7] |
杨志峰,吕维洁,盛险峰,等. 原位合成钛基复合材料的高温力学性能[J]. 机械工程材料, 2004,28(3):22-27.
|
[8] |
刘长青.机械制造技术[M].武汉:华中科技大学出版社,2005.
|
[9] |
DONG G B, XIONG J, YANG M, et al. Effect of Mo2C on erosion-corrosion resistance behavior of Ti(C,N)-based cermets[J]. Wear, 2012, 294/295(3):364-369.
|
[10] |
LIN Z H, XIONG J, GUO Z X, et al. Effect of addition on the microstructure and fracture behavior of (W,Ti)C-based cemented carbides[J]. Ceramic International, 2014, 40:16421-16428.
|
[11] |
AHN S Y, KANG S H. Formation of core/rim structures in Ti(C,N)-WC-Ni cermets via a dissolution and reprecipitation process[J]. Journal of American Ceramic Society, 2000, 83(6):1489-1494.
|
[12] |
LIU N, CHEN M H, XU Y D, et al. Wettability and bonding between Ni and Ti(C,N) with multiple carbide additions[J]. Journal of Materials Science and Technology, 2005, 21(1):53-59.
|
[13] |
刘宁. Ti(C,N)基金属陶瓷材料[M]. 合肥:合肥工业大学出版社,2009.
|
[14] |
戴鸿霞,熊惟皓,张国鹏, 等. TaC含量对Ti(C,N)基金属陶瓷抗热震性能的影响[J].机械工程材料,2012,36(12):10-13.
|
[15] |
束德林.工程材料力学性能[M].北京:机械工业出版社,2016.
|
[16] |
马向平, 王书义, 陈威, 等. 金属陶瓷在高温下的变形规律[J].北京科技大学学报, 2007, 29(2):220-225.
|
[17] |
谭孟曦. 利用纳米压痕加载曲线计算硬度-压入深度关系及弹性模量[J]. 金属学报, 2005, 41(10):1020-1024.
|
[18] |
BOLOGNINI S, FEUSIER G, MARI D, et al. TiMoCN-based cermets:high-temperature deformation[J]. International Journal of Refractory Metals and Hard Materials, 2003, 21(1/2):19-26.
|
[19] |
CHIEN F R, NING X J, HEUER H. Slip systems and dislocation emission from crack tips in single crystal TiC at low temperatures[J]. Acta Materialia, 1996, 44(6):2265-2283.
|
[20] |
WILLIAMS W S. Influence of temperature, strain rate, surface condition, and composition on the plasticity of transition-metal carbide crystals[J]. Journal of Applied Physics, 1964, 35(4):1329-1338.
|
[21] |
陈景榕, 石沂平. 工具材料的高温硬度[J]. 北京科技大学学报, 1990(5):443-450.
|
[22] |
COBLE R L. A model for boundary diffusion controlled creep in polycrystalline materials[J]. Journal of Applied Physics, 1963, 34(6):1679-1682.
|
[1] | LI Sijie, MENG Junsheng, CHEN Zhihui, HAO Chenfan, LI Qindong. Effect of Process Parameters on Dilution Rate and Microhardness of Argon Arc Cladding TiC+Al2O3/Ni Composite Coating[J]. Materials and Mechanical Engineering, 2024, 48(10): 35-40. DOI: 10.11973/jxgccl240190 |
[2] | XIA Yu, ZHANG Shitao, ZHANG Bowen, SHANGGUAN Fujun, LIU Fukang, DENG Weitao, LI Wenge, ZHAO Yuantao. Effect of WC Addition Amount on Microstructure and Corrosion Resistance of Mo2FeB2 Cermet Coating[J]. Materials and Mechanical Engineering, 2023, 47(12): 26-30. DOI: 10.11973/jxgccl202312005 |
[3] | FANG Ding, YU Ze, GOU Shaoxuan. Effect of AlxCoCrFeNi High-Entropy Alloy Binder on Microstructure and High-Temperature Oxidation Resistance of Ti(C,N)-Based Cermets[J]. Materials and Mechanical Engineering, 2023, 47(11): 51-56. DOI: 10.11973/jxgccl202311009 |
[4] | HUO Renjie, JIN Yuhua, WANG Guangshan, LI Hailong. Microhardness and Tensile Properties of Friction Stir Welded Joint of 2024 Aluminum Alloy at Different Welding Speeds[J]. Materials and Mechanical Engineering, 2019, 43(1): 50-53. DOI: 10.11973/jxgccl201901011 |
[5] | DI Yan, WANG Chang-chang, JIA Shu-jun, LIU Qing-you, PENG Ju-bo. Effect of Rolling Technology on Microstructure and Microhardness of Lowcost X80 Pipeline Steel[J]. Materials and Mechanical Engineering, 2015, 39(12): 51-54. DOI: 10.11973/jxgccl201512012 |
[6] | CHENG Yang, DONG Gang, CHEN Guo-xi, DEND Qi-lin. Effects of Niobium Element on Microstructure and Microhardness of Ni-based Alloy Laser Cladding Coating[J]. Materials and Mechanical Engineering, 2014, 38(9): 24-28. |
[7] | JING Jing-nan, YU Zhi-shui, CHANG Wen-long, QIN You-qiong. Microstructure and Microhardness of 316L Stainless Steel Joint Seam Vacuum Brazed by BNi7 Ni-Based Filler Metal[J]. Materials and Mechanical Engineering, 2013, 37(1): 10-13. |
[8] | SHEN Chen, XUE Yu-jun, KU Xiang-chen, LIU Yi, LI Ji-shun. Effect of Ultrasonic on Microstructure and Microhardness of Ni-ZrO2 Nanocomposite Coating[J]. Materials and Mechanical Engineering, 2010, 34(7): 80-83. |
[9] | GUO Wei, WANG Kuai-she, WANG Feng, WANG Wen, WANG Wen-li. Effect of Heat Treatment on Microstructure and Microhardness of Friction Stir-welded Joints for AZ31B Magnesium Alloy[J]. Materials and Mechanical Engineering, 2009, 33(10): 33-36. |
[10] | ZHONG Wancai, LIU Cheng, FANG Liangbin, LI Qiang, ZHAO Yuantao, ZHANG Shitao, LI Wenge. Effect of Process Parameters on Microhardness and Erosion Properties of Atmospheric Plasma Spraying Al2O3-13%TiO2 Composite Coating[J]. Materials and Mechanical Engineering. DOI: 10.11973/jxgccl230366 |