Citation: | LI Shikang, LI Luoxing, XU Rong. Temperature Rise Correction of 6063 Aluminum Alloy during Hot Compression at Medium Strain Rate Considering Heat Conduction and Thermal Radiation[J]. Materials and Mechanical Engineering, 2017, 41(7): 98-104,110. DOI: 10.11973/jxgccl201707019 |
[1] |
HUANG C Q, DIAO J P, DENG H, et al. Microstructure evolution of 6016 aluminum alloy during compression at elevated temperatures by hot rolling emulation[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(6):1576-1582.
|
[2] |
LIN Y C, XIA Y C, CHEN X M, et al. Constitutive descriptions for hot compressed 2124-T851 aluminum alloy over a wide range of temperature and strain rate[J]. Computational Materials Science, 2010, 50(1):227-233.
|
[3] |
CAI J, LI F, LIU T, et al. Constitutive equations for elevated temperature flow stress of Ti-6Al-4V alloy considering the effect of strain[J].Materials & Design,2011,32(3):1144-1151.
|
[4] |
李红斌, 郑明月, 田伟, 等. 基于Johnson-Cook模型构建M50NiL齿轮钢的流变应力本构方程[J]. 机械工程材料, 2016,40(11):31-37.
|
[5] |
GOETZ R L, SEMIATIN S L. The adiabatic correction factor for deformation heating during the uniaxial compression test[J]. Journal of Materials Engineering and Performance, 2001, 10(6):710-717.
|
[6] |
ZHANG F, SHEN J, YAN X D, et al. Constitutive analysis to predict high-temperature flow stress in 2099 Al-Li alloy[J]. Rare Metal Materials and Engineering,2014,43(6):1312-1318.
|
[7] |
LI L, ZHOU J, DUSZCZYK J. Determination of a constitutive relationship for AZ31B magnesium alloy and validation through comparison between simulated and real extrusion[J]. Journal of Materials Processing Technology, 2006, 172(3):372-380.
|
[8] |
CHARPENTIER P L, STONE B C, ERNST S C, et al. Characterization and modeling of the high temperature flow behavior of aluminum alloy 2024[J]. Metallurgical Transactions A, 1986, 17(12):2227-2237.
|
[9] |
ZHANG J, DI H, WANG X, et al. Constitutive analysis of the hot deformation behavior of Fe-23Mn-2Al-0.2C twinning induced plasticity steel in consideration of strain[J]. Materials & Design, 2013, 44(18):354-364.
|
[10] |
LUO J, LI M Q, MA D W. The deformation behavior and processing maps in the isothermal compression of 7A09 aluminum alloy[J]. Materials Science and Engineering A, 2012, 532(3):548-557.
|
[11] |
肖罡, 杨钦文, 何欢, 等. 基于元模型方法的6013铝合金热变形流变行为建模[J]. 机械工程材料, 2016,40(1):78-82.
|
[12] |
MATAYA M C, SACKSCHEWSKY V E. Effect of internal heating during hot compression on the stress-strain behavior of alloy 304L[J]. Metallurgical and Materials Transactions A, 1994, 25(12):2737-2752.
|
[13] |
DADRAS P, THOMAS J F. Characterization and modeling for forging deformation of Ti-6Ai-2Sn-4Zr-2Mo-0.1Si[J]. Metallurgical and Materials Transactions A, 1981, 12(11):1867-1876.
|
[14] |
OH S I, SEMIATIN S L, JONAS J J. An analysis of the isothermal hot compression test[J].Metallurgical and Materials Transactions A, 1992, 23(3):963-975.
|
[15] |
OTSUKA A, HOSONO K, TANAKA R, et al. A survey of hemispherical total emissivity of the refractory metals in practical use[J]. Energy, 2005, 30(2/3/4):535-543.
|
[16] |
SHEIKHOLESLAMI M, DOMIRI G D, YOUNUS J M, et al. Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model[J]. Journal of Magnetism and Magnetic Materials, 2015, 374:36-43.
|
[17] |
WEN C D, MUDAWAR I. Emissivity characteristics of roughened aluminum alloy surfaces and assessment of multispectral radiation thermometry (MRT) emissivity models[J]. International Journal of Heat and Mass Transfer, 2004, 47(17/18):3591-3605.
|
[18] |
WEI G S, HUANG P R, LIU D Y,et al. Thermophysical property measurements and thermal energy storge capacity analysis of aluminum alloys[J].Solar Energy,2016,137:66-72.
|
[19] |
RAI A K, TRPATHY H, HAJRA R N,et al. Thermophysical properties of Ni based super alloy 617[J]. Journal of Alloys and Compounds, 2017, 698:442-450.
|
[20] |
BERTELLI F, CHEUNG N, FERREIRA I L,et al. Evaluation of thermophysical properties of Al-Sn-Si alloys based on computational thermodynamics and validation by numerical and experimental simulation of solidification[J]. The Journal of Chemical Thermodynamics, 2016, 98:9-20.
|
[21] |
KENNETH C M. Recommended values of thermophysical properties for selected commercial alloys[M]. Cambridge England:Woodhead Publishing Limited, 2002:19-225.
|
[22] |
CHARPENTIER P L, STONE B C, ERNST S C, et al. Characterization and modeling of the high temperature flow behavior of aluminum alloy 2024[J]. Metallurgical and Materials Transactions A, 1986, 17(12):2227-2237.
|
[23] |
ASHBY M F. Overview No. 80:On the engineering properties of materials[J]. Acta Metallurgica, 1989, 37(5):1273-1293.
|