• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
WAN Bin, XIAO Xuan, SONG Sheng, ZHOU Tianning, ZENG Yuan, HE Li. Research Progress on Room-Temperature Brittleness and Toughening of TaCr2 Laves Phase Alloy[J]. Materials and Mechanical Engineering, 2017, 41(8): 1-5,43. DOI: 10.11973/jxgccl201708001
Citation: WAN Bin, XIAO Xuan, SONG Sheng, ZHOU Tianning, ZENG Yuan, HE Li. Research Progress on Room-Temperature Brittleness and Toughening of TaCr2 Laves Phase Alloy[J]. Materials and Mechanical Engineering, 2017, 41(8): 1-5,43. DOI: 10.11973/jxgccl201708001

Research Progress on Room-Temperature Brittleness and Toughening of TaCr2 Laves Phase Alloy

More Information
  • Received Date: December 09, 2016
  • Revised Date: June 20, 2017
  • The reason for room-temperature brittleness of TaCr2 Laves phase alloy and the toughening method are reviewed. The research progress on the alloy toughening and the existing problems are introduced from the aspects of composition design and structure controlling, alloying toughening, material preparation technique improvement, etc. The room-temperature brittleness is mainly ascribed to the large unit cell size and complex lattice structure of TaCr2. The future research should focus on the micro-nano scale high strength and toughness tantalum-chrome multi-component composites prepared using the new powder metallurgy technology.
  • [1]
    LIU C T, ZHU J H, BRADY M P, et al. Physical metallurgy and mechanical properties of transition-metal Laves phase alloys[J]. Intermetallics, 2000, 8(9):1119-1129.
    [2]
    CHISHOLM M F, KUMAR S, HAZZLEDINE P. Dislocations in complex materials[J]. Science, 2005, 307(5710):701-703.
    [3]
    CHAN K S. The fracture toughness of niobium-based, in situ composites[J]. Metallurgical and Materials Transactions A, 1996,27(9):2518-2531.
    [4]
    BEI H, PHARR G M, GEORGE E P. A review of directionally solidified intermetallic composites for high-temperature structural applications[J]. Journal of Materials Science, 2004, 39(12):3975-3984.
    [5]
    BHOWMIK A, KNOWLES K M, STONE H J. Microstructural evolution and interfacial crystallography in Cr-Cr2Ta[J]. Intermetallics, 2012, 31:34-47.
    [6]
    曲选辉,何玉定,黄伯云. Laves相铬化物的研究[J]. 高技术通讯,1996,6(12):27-30.
    [7]
    鲁世强,黄伯云,贺跃辉. 机械合金化对Laves相Cr2Nb固相热反应合成的影响[J]. 航空学报,2003,24(6):568-571.
    [8]
    雷学海,肖璇,胡孔生,等. 球磨时间对Cr-33Ta粉的结构与形貌的影响[J]. 特种铸造及有色合金,2014,34(1):9-11.
    [9]
    YANG Z Q, CHISHOLMB M F, YANG B,et al. Role of crystal defects on brittleness of C15 Cr2Nb Laves phase[J]. Acta Materialia, 2012, 60(6):2637-2646.
    [10]
    何玉定,曲选辉,黄伯云. 机械活化热压合成Laves相TiCr2及其力学性能的研究[J]. 稀有金属,2003,27(2):303-306.
    [11]
    姚强,张羽,孙坚. 过渡金属元素在NbCr2 Laves相中晶格占位的第一性原理计算[J]. 金属学报,2006,42(8):801-804.
    [12]
    肖璇,鲁世强,董显娟,等. 合金元素对Laves相增强Nb基合金的相组成与力学性能的影响[J]. 稀有金属材料与工程,2013,42(3):560-564.
    [13]
    XUE Y L, LI S M, ZHONG H,et al.Characterization of fracture toughness and toughening mechanisms in Laves phase Cr2Nb based alloys[J]. Materials Science and Engineering A, 2015,638:340-347.
    [14]
    LIU Y, LIVINGSTON J D, ALLEN S M. Room-temperature deformation and stress-induced phase[J]. Metallurgical and Materials Transactions A, 1992, 23(s1):3303-3308.
    [15]
    KUMAR K S, PANG L, LIU C T, et al. Structural stability of the Laves phase Cr2Ta in a two-phase Cr-Cr2Ta alloy[J]. Acta Materialia, 2000, 48(4):911-923.
    [16]
    STEIN F, PALM M, SAUTHOFF G. Structure and stability of Laves phases. Part I. Critical assessment of factors controlling Laves phase stability[J]. Intermetallics, 2004, 12(7):713-720.
    [17]
    ZHU J H, LIAW P K, LIU C T. Effect of electron concentration on the phase stability of NbCr2-based Laves phase alloys[J]. Materials Science and Engineering A, 1997, 239:260-264.
    [18]
    ZHU J H, PIKEL M, LIU C T, et al. Point defects in binary NbCr2 Laves-phase alloys[J].Scripta Materialia,1998,39(7):833-838.
    [19]
    TAKASUGI T,YOSHIDA M, HANADA S. Deformability improvement in C15 NbCr2 intermetallics by addition of ternary elements[J]. Acta Materialia, 1996, 44(2):669-674.
    [20]
    OHTA T, KANENO Y, INOUE H, et al. Phase field and room-temperature mechanical properties of the C15 Laves phase in the Zr-Ta-Cr alloy system[J]. Metallurgical and Materials Transactions A, 2005, 36(3):583-590.
    [21]
    BHOWMIK A, STONE H J. A study on the infiuence of Mo,Al and Si additions on the microstructure of annealed dual phase Cr-Ta alloys[J]. Journal of Materials Science, 2013, 48(8):3283-3293.
    [22]
    OHTA T, NAKAGAWA Y, KANENO Y. Microstructures and mechanical properties of NbCr2 and ZrCr2 Laves phase alloys prepared by powder metallurgy[J]. Journal of Materials Science,2003,38(4):657-665.
    [23]
    CHEN K C, CHU F, KOTULA P G, et al. HfCo2 Laves phase intermetallics-Part Ⅱ:Elastic and mechanical properites as a function of composition[J]. Intermetallics, 2001, 9(9):785-798.
    [24]
    HEGGEN M, HOUBEN L, FEUERBACHER M. Plastic-deformation mechanism in complex Solids[J]. Nature Materials, 2010, 9(4):332-336.
    [25]
    CHU F M, POPE D P. Twinning in intermetallic compounds-Are long shear vectors and/or shuffles really necessary[J]. Journal of Materials Science & Technology, 1993, 9(5):313-321.
    [26]
    HAZZLEDINE P M, PIROUZ P. Synchroshear transformations in Laves phases[J]. Scripta Metallurgica of Materialia, 1993, 28(10):1277-1282.
    [27]
    ZHANG W, YU R, DU K, et al. Undulating slip in Laves phase and implications for deformation in brittle materials[J]. Physical Review Letters, 2011, 106(16):165505.
    [28]
    TIEN H, ZHU J H, LIU C T, et al. Effect of Ru additions on microstructure and mechanical properties of Cr-TaCr2 alloys[J]. Intermetallics, 2005, 13(3):361-366.
    [29]
    BRADY M P, ZHU J H, LIU C T, et al. Intermetallic reinforced Cr alloys for high-temperature use[J]. Materials at High Temperatures, 1999, 16(4):189-193.
    [30]
    HONG S, FU C L. Theoretical study on cracking behavior in two-phase alloys Cr-Cr2X(X=Hf, Nb, Ta, Zr)[J]. Intermetallics, 2001, 9(9):799-805.
    [31]
    OHTA T, KANENO Y, INOUE H, et al. Phase field and room-temperature mechanical properties of the C15 Laves phase in the Zr-Ta-Cr alloy system[J]. Metallurgical and Materials Transactions A, 2005, 36(3):583-590.
    [32]
    CHEN C K, ALLEN S M, LIVINGSTON J D. Factors affecting the room-temperature mechanical properties of TiCr2-base Laves phase alloys[J]. Materials Science and Engineering A, 1998, 242(1/2):162-173.
    [33]
    BEWLAY B P, LIPSITT H A, JAKSON M R. Solidification processing of high temperature intermetallic eutectic-based alloys[J]. Materials Science and Engineering A, 1995, 192/193:534-543.
    [34]
    BRADY M P, LIU C T, ZHU J H, et al. Effects of Fe additions on the mechanical properties and oxidation behavior of Cr2Ta Laves phase reinforced Cr[J]. Scripta Materialia, 2005, 52(9):815-819.
    [35]
    HE Y H, LIAW P K, LU Y, et al. Effects of processing on the microstructure and mechanical behavior of binary Cr-Ta alloys[J]. Materials Science and Engineering A, 2002, 329:696-702.

Catalog

    Article views (3) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return