Citation: | WAN Bin, XIAO Xuan, SONG Sheng, ZHOU Tianning, ZENG Yuan, HE Li. Research Progress on Room-Temperature Brittleness and Toughening of TaCr2 Laves Phase Alloy[J]. Materials and Mechanical Engineering, 2017, 41(8): 1-5,43. DOI: 10.11973/jxgccl201708001 |
[1] |
LIU C T, ZHU J H, BRADY M P, et al. Physical metallurgy and mechanical properties of transition-metal Laves phase alloys[J]. Intermetallics, 2000, 8(9):1119-1129.
|
[2] |
CHISHOLM M F, KUMAR S, HAZZLEDINE P. Dislocations in complex materials[J]. Science, 2005, 307(5710):701-703.
|
[3] |
CHAN K S. The fracture toughness of niobium-based, in situ composites[J]. Metallurgical and Materials Transactions A, 1996,27(9):2518-2531.
|
[4] |
BEI H, PHARR G M, GEORGE E P. A review of directionally solidified intermetallic composites for high-temperature structural applications[J]. Journal of Materials Science, 2004, 39(12):3975-3984.
|
[5] |
BHOWMIK A, KNOWLES K M, STONE H J. Microstructural evolution and interfacial crystallography in Cr-Cr2Ta[J]. Intermetallics, 2012, 31:34-47.
|
[6] |
曲选辉,何玉定,黄伯云. Laves相铬化物的研究[J]. 高技术通讯,1996,6(12):27-30.
|
[7] |
鲁世强,黄伯云,贺跃辉. 机械合金化对Laves相Cr2Nb固相热反应合成的影响[J]. 航空学报,2003,24(6):568-571.
|
[8] |
雷学海,肖璇,胡孔生,等. 球磨时间对Cr-33Ta粉的结构与形貌的影响[J]. 特种铸造及有色合金,2014,34(1):9-11.
|
[9] |
YANG Z Q, CHISHOLMB M F, YANG B,et al. Role of crystal defects on brittleness of C15 Cr2Nb Laves phase[J]. Acta Materialia, 2012, 60(6):2637-2646.
|
[10] |
何玉定,曲选辉,黄伯云. 机械活化热压合成Laves相TiCr2及其力学性能的研究[J]. 稀有金属,2003,27(2):303-306.
|
[11] |
姚强,张羽,孙坚. 过渡金属元素在NbCr2 Laves相中晶格占位的第一性原理计算[J]. 金属学报,2006,42(8):801-804.
|
[12] |
肖璇,鲁世强,董显娟,等. 合金元素对Laves相增强Nb基合金的相组成与力学性能的影响[J]. 稀有金属材料与工程,2013,42(3):560-564.
|
[13] |
XUE Y L, LI S M, ZHONG H,et al.Characterization of fracture toughness and toughening mechanisms in Laves phase Cr2Nb based alloys[J]. Materials Science and Engineering A, 2015,638:340-347.
|
[14] |
LIU Y, LIVINGSTON J D, ALLEN S M. Room-temperature deformation and stress-induced phase[J]. Metallurgical and Materials Transactions A, 1992, 23(s1):3303-3308.
|
[15] |
KUMAR K S, PANG L, LIU C T, et al. Structural stability of the Laves phase Cr2Ta in a two-phase Cr-Cr2Ta alloy[J]. Acta Materialia, 2000, 48(4):911-923.
|
[16] |
STEIN F, PALM M, SAUTHOFF G. Structure and stability of Laves phases. Part I. Critical assessment of factors controlling Laves phase stability[J]. Intermetallics, 2004, 12(7):713-720.
|
[17] |
ZHU J H, LIAW P K, LIU C T. Effect of electron concentration on the phase stability of NbCr2-based Laves phase alloys[J]. Materials Science and Engineering A, 1997, 239:260-264.
|
[18] |
ZHU J H, PIKEL M, LIU C T, et al. Point defects in binary NbCr2 Laves-phase alloys[J].Scripta Materialia,1998,39(7):833-838.
|
[19] |
TAKASUGI T,YOSHIDA M, HANADA S. Deformability improvement in C15 NbCr2 intermetallics by addition of ternary elements[J]. Acta Materialia, 1996, 44(2):669-674.
|
[20] |
OHTA T, KANENO Y, INOUE H, et al. Phase field and room-temperature mechanical properties of the C15 Laves phase in the Zr-Ta-Cr alloy system[J]. Metallurgical and Materials Transactions A, 2005, 36(3):583-590.
|
[21] |
BHOWMIK A, STONE H J. A study on the infiuence of Mo,Al and Si additions on the microstructure of annealed dual phase Cr-Ta alloys[J]. Journal of Materials Science, 2013, 48(8):3283-3293.
|
[22] |
OHTA T, NAKAGAWA Y, KANENO Y. Microstructures and mechanical properties of NbCr2 and ZrCr2 Laves phase alloys prepared by powder metallurgy[J]. Journal of Materials Science,2003,38(4):657-665.
|
[23] |
CHEN K C, CHU F, KOTULA P G, et al. HfCo2 Laves phase intermetallics-Part Ⅱ:Elastic and mechanical properites as a function of composition[J]. Intermetallics, 2001, 9(9):785-798.
|
[24] |
HEGGEN M, HOUBEN L, FEUERBACHER M. Plastic-deformation mechanism in complex Solids[J]. Nature Materials, 2010, 9(4):332-336.
|
[25] |
CHU F M, POPE D P. Twinning in intermetallic compounds-Are long shear vectors and/or shuffles really necessary[J]. Journal of Materials Science & Technology, 1993, 9(5):313-321.
|
[26] |
HAZZLEDINE P M, PIROUZ P. Synchroshear transformations in Laves phases[J]. Scripta Metallurgica of Materialia, 1993, 28(10):1277-1282.
|
[27] |
ZHANG W, YU R, DU K, et al. Undulating slip in Laves phase and implications for deformation in brittle materials[J]. Physical Review Letters, 2011, 106(16):165505.
|
[28] |
TIEN H, ZHU J H, LIU C T, et al. Effect of Ru additions on microstructure and mechanical properties of Cr-TaCr2 alloys[J]. Intermetallics, 2005, 13(3):361-366.
|
[29] |
BRADY M P, ZHU J H, LIU C T, et al. Intermetallic reinforced Cr alloys for high-temperature use[J]. Materials at High Temperatures, 1999, 16(4):189-193.
|
[30] |
HONG S, FU C L. Theoretical study on cracking behavior in two-phase alloys Cr-Cr2X(X=Hf, Nb, Ta, Zr)[J]. Intermetallics, 2001, 9(9):799-805.
|
[31] |
OHTA T, KANENO Y, INOUE H, et al. Phase field and room-temperature mechanical properties of the C15 Laves phase in the Zr-Ta-Cr alloy system[J]. Metallurgical and Materials Transactions A, 2005, 36(3):583-590.
|
[32] |
CHEN C K, ALLEN S M, LIVINGSTON J D. Factors affecting the room-temperature mechanical properties of TiCr2-base Laves phase alloys[J]. Materials Science and Engineering A, 1998, 242(1/2):162-173.
|
[33] |
BEWLAY B P, LIPSITT H A, JAKSON M R. Solidification processing of high temperature intermetallic eutectic-based alloys[J]. Materials Science and Engineering A, 1995, 192/193:534-543.
|
[34] |
BRADY M P, LIU C T, ZHU J H, et al. Effects of Fe additions on the mechanical properties and oxidation behavior of Cr2Ta Laves phase reinforced Cr[J]. Scripta Materialia, 2005, 52(9):815-819.
|
[35] |
HE Y H, LIAW P K, LU Y, et al. Effects of processing on the microstructure and mechanical behavior of binary Cr-Ta alloys[J]. Materials Science and Engineering A, 2002, 329:696-702.
|