Citation: | WANG Na, YANG Qi, CUI Shuai, YANG Lu. Microstructure and Performance of SnO2-C Composite Coating with Network Structure Used for Lithium Ion Batteries Anode[J]. Materials and Mechanical Engineering, 2017, 41(11): 23-28. DOI: 10.11973/jxgccl201711004 |
[1] |
赵智泉, 刘庆雷, 黄大成, 等. 锂离子电池负极用硅/碳纳米复合材料制备方法和性能的研究进展[J]. 机械工程材料, 2012, 36(9): 1-7.
|
[2] |
张静, 王月磊, 刘浩涵, 等. 简单包覆改性LiMn2O4正极材料在高温下的电化学性能[J].机械工程材料,2015,39(3):59-64.
|
[3] |
杨琪, 胡文彬. 无定形SnO2-C复合纤维及其电化学性能研究[J]. 无机材料学报, 2015, 30(8): 861-866.
|
[4] |
HASSAN M F, RAHMAN M M, GUO Z P, et al. SnO2-NiO-C nanocomposite as a high capacity anode material for lithium-ion batteries[J]. Journal of Materials Chemistry, 2010, 20(43): 9707-9712.
|
[5] |
HUA Y M, YANG Q R, MA J M, et al. Sn/SnO2@C composite nanofibers as advanced anode for lithium-ion batteries[J]. Electrochimica Acta, 2015, 186: 271-276.
|
[6] |
HONG Y J, KANG Y C. One-pot synthesis of core-shell-structured tin oxide-carbon composite powders by spray pyrolysis for use as anode materials in Li-ion batteries[J]. Carbon, 2015, 88: 262-269.
|
[7] |
YANG Q, ZHAO J C, SUN T, et al. Enhanced performance of SnO2-C composite fibers containing NiO as lithium-ion battery anodes[J].Ceramics International,2015,41:11213-11220.
|
[8] |
TIAN Q H, TIAN Y, ZHANG Z X, et al. Three-dimensional tin dioxide/carbon composite constructed by hollow nanospheres with quasi-sandwich structures as improved anode materials for lithium-ion batteries[J]. Journal of Power Sources, 2016, 306(29): 213-218.
|
[9] |
CAO K Z, JIAO L F, LIU H Q, et al. 3D hierarchical porous alpha-Fe2O3 nanosheets for high-performance lithium-ion batteries[J]. Advanced Energy Materials,2015,5:1401-1421.
|
[10] |
CAO K Z, JIAO L F, LIU Y C, et al. Ultra-high capacity lithium-ion batteries with hierarchical CoO nanowire clusters as binder free electrodes[J]. Advanced Function Materials, 2015, 25: 1082-1089.
|
[11] |
TANG Y P, HONG L, WU Q L, et al. TiO2(B) nanowire arrays on Ti foil substrate as three-dimensional anode for lithium-ion batteries[J]. Electrochimica Acta, 2016, 195: 27-33.
|
[12] |
TANG Y P, TAN X X, HOU G Y, et al. Nanocrystalline Li4Ti5O12-coated TiO2 nanotube arrays as three-dimensional anode for lithium-ion batteries[J]. Electrochimica Acta, 2014, 117: 172-178.
|
[13] |
TANG Y P, TAN X X, HOU G Y, et al. Synthesis of densenanoca vitiesinside TiO2 nanowire array and its electrochemical properties as a three-dimensional anode material for Li-ion batteries[J]. Electrochimica Acta, 2012, 78: 154-159.
|
[14] |
LI W H, YANG Z Z, JIANG Y, et al. Crystalline red phosphorus incorporated with porous carbon nanofibers as exible electrode for high performance lithium-ion batteries[J]. Carbon, 2014, 78: 455-462.
|
[15] |
PENG Y T, LO C T. Electrospun porous carbon nanofibers as lithium ion battery anodes[J]. Journal of Solid State Electrochemistry, 2015, 19(11): 3401-3410.
|
[16] |
GU C D, MAI Y J, ZHOU J P, et al. Non-aqueous electrodeposition of porous tin-based film as an anode for lithium-ion battery[J]. Journal of Power Sources, 2012, 214: 200-207.
|
[17] |
ZHAO H P, JIANG C Y, HE X M, et al. A novel composite anode for LIB prepared via template-like-directed electrodepositing Cu-Sn alloy process[J]. Ionics,2008,14(2): 113-120.
|
[18] |
LIAN P C, WANG J Y, CAI D D, et al. Porous SnO2@C/graphene nanocomposite with 3D carbon conductive network as a superior anode material for lithium-ion batteries[J]. Electrochimica Acta, 2014, 116: 103-110.
|
[19] |
WU M, LI X W, QUN Z A, et al. Fabrication of Sn film via magnetron sputtering towards understanding electrochemical behavior in lithium-ion battery application[J]. Electrochimica Acta, 2014, 123: 144-150.
|