Citation: | YANG Zhen, LU Jintao, LE Ming, ZHOU Yongli, LI Hao, YUAN Yong. Oxidation Behaviour of Incoloy800H Alloy in High-Temperature Pure Steam[J]. Materials and Mechanical Engineering, 2018, 42(1): 1-6. DOI: 10.11973/jxgccl201801001 |
[1] |
尹清辽,孙玉良,居怀明,等. 模块式高温气冷堆超临界蒸汽发生器设计[J]. 原子能科学技术,2006,40(6):707-713.
|
[2] |
FULGER M, OHAI D, MIHALACHE M, et al. Oxidation behavior of Incoloy 800 under simulated supercritical water conditions[J]. Journal of Nuclear Materials, 2009, 385(2):288-293.
|
[3] |
TAN L, ALLEN T R, YANG Y. Corrosion behavior of alloy 800H (Fe-21Cr-32Ni) in supercritical water[J]. Corrosion Science, 2011, 53(2):703-711.
|
[4] |
OTSUKA N, FUJIKAWA H. Scaling of austenitic stainless steels and nickel-base alloys in high-temperature steam at 973 K[J]. Corrosion, 1991, 47(4):240-248.
|
[5] |
TAN L, REN X, SRIDHARAN K, et al. Effect of shot-peening on the oxidation of alloy 800H exposed to supercritical water and cyclic oxidation[J]. Corrosion Science, 2008, 50(7):2040-2046.
|
[6] |
TAN L, SRIDHARAN K, ALLEN T R. The effect of grain boundary engineering on the oxidation behavior of INCOLOY alloy 800H in supercritical water[J]. Journal of Nuclear Materials, 2006, 348(3):263-271.
|
[7] |
TAN L,SRIDHARAN K,ALLEN T R,et al.Microstructure tailoring for property improvements by grain boundary engineering[J]. Journal of Nuclear Materials, 2008, 374(1/2):270-280.
|
[8] |
CHEN W S, KAI W, TSAY L W, et al. The oxidation behavior of three different zones of welded Incoloy 800H alloy[J]. Nuclear Engineering and Design, 2014, 272:92-98.
|
[9] |
杨珍,鲁金涛,赵新宝,等. HR3C在750℃空气和水蒸气中的高温氧化行为研究[J]. 动力工程学报,2015,35(10):859-864.
|
[10] |
TALLMAN R L, GULBRANSEN E A. Dislocation and grain boundary diffusion in the growth of α-Fe2O3 whiskers and twinned platelets peculiar to gaseous oxidation[J]. Nature, 1968, 218:1046-1047.
|
[11] |
VOSS D A, BUTLER E P, MITCHELL T E. The growth of hematite blades during the high temperature oxidation of iron[J]. Metallurgical Transactions A, 1982, 13(5):929-935.
|
[12] |
RAYNAUD G, RAPP R. In situ observation of whiskers, pyramids and pits during the high-temperature oxidation of metals[J]. Oxidation of Metals, 1984, 21(1/2):89-102.
|
[13] |
LIMOGE Y, BOCQUET J L. Selfdiffusion and point defects in iron oxides FeO, Fe3O4, α-Fe2O3[J]. Defect and Diffusion Forum, 2001, 194:1051-1056.
|
[14] |
HAGEL W C, SEYBOLT A U. Cation diffusion in Cr2O3[J]. Journal of the Electrochemical Society, 1961, 108(12):1146-1152.
|
[15] |
HAGEL W C. Anion diffusion in α-Cr2O3[J]. Journal of the American Ceramic Society, 1965, 48(2):70-75.
|
[16] |
JUTTE R H, KOOI B J, SOMERS M A, et al. On the oxidation of α-Fe and ε-FeFe2N1-z:I. Oxidation kinetics and microstructural evolution of the oxide and nitride layers[J]. Oxidation of Metals, 1997, 48(1/2):87-109.
|
[17] |
STOTT F, WEI F. High temperature oxidation of commercial austenitic stainless steels[J]. Materials Science and Technology, 1989, 5(11):1140-1147.
|
[18] |
KOFSTAD P K. Nonstoichiometry, diffusion and electrical conductivity in binary metal oxides[M]. New York:Wiley-Interscience, 1972.
|
[19] |
KOFSTAD P, LILLERUD K. Chromium transport through Cr2O3 scales I. On lattice diffusion of chromium[J]. Oxidation of Metals, 1982, 17(3/4):177-194.
|
[20] |
GRESKOVICH C. Deviation from stoichiometry in Cr2O3 at high oxygen partial pressures[J]. Journal of the American Ceramic Society, 1984, 67(6):C111-C112.
|
[21] |
LOBNIG R E, SCHMIDT H P, HENNESEN K, et al. Diffusion of cations in chromia layers grown on iron-base alloys[J]. Oxidation of Metals, 1992, 37(1/2):81-93.
|
[22] |
WAGNER C. Reaktionstypen bei der oxydation von legierungen[J].Berichte der Bunsengesellschaft für Physikalische Chemie, 1959, 63(7):772-782.
|
[23] |
WAGNER C. Theoretical analysis of the diffusion processes determining the oxidation rate of alloys[J]. Journal of the Electrochemical Society, 1952, 99(10):369-380.
|
[24] |
SUZUOKA T. Lattice and grain boundary diffusion in polycrystals[J]. Transactions of Japan Institute of Metals, 1961, 2:25-33.
|
[25] |
LAFLAMME G R,MORRAL J E. Limiting cases of subscale formation[J].Acta Metallurgica, 1978, 26(12):1791-1794.
|
[26] |
KAMPMANN L, KAHLWEIT M. Zur theorie von fällungen[J]. Berichte der Bunsengesellschaft für Physikalische Chemie, 1970, 74(5):456-462.
|
[27] |
WAGNER C. Mathematical analysis of the formation of periodic precipitations[J]. Journal of Colloid Science, 1950, 51(1):85-97.
|
[28] |
YALI L, MORRAL J E. A local equilibrium model for internal oxidation[J].Acta Materialia,2002,50(14):3683-3691. 欢迎来稿欢迎订阅欢迎刊登广告
|
[1] | LI Yu, HE Sifan, LIU Guangming, YANG Shou, LIU Zhihao, LI Futian. Effect of Shot Peening on High Temperature Steam Oxidation Resistance of S31035 Austenitic Heat Resistant Steel[J]. Materials and Mechanical Engineering, 2023, 47(8): 65-71. DOI: 10.11973/jxgccl202308011 |
[2] | WANG Huicong, LIU Jingye, LI Weizhou, XIE Chuanbin, LI Hao, ZHANG Xiuhai. Effect of Tantalum Addition on High Temperature Oxidation Resistance Mechanism of Ni-5Al and Ni-10Al Alloys[J]. Materials and Mechanical Engineering, 2022, 46(8): 58-67. DOI: 10.11973/jxgccl202208010 |
[3] | WANG Erpeng, LIU Haifei, GUO Wen, ZHENG Bingxin, LU Mingyang, YAN Haiju, ZHANG Xiuhai. Effect of Pre-oxidation Temperature on High-Temperature Cyclic Oxidation Resistance of Ni-15Cr-5Al-5Si Alloy[J]. Materials and Mechanical Engineering, 2019, 43(2): 39-42. DOI: 10.11973/jxgccl201902008 |
[4] | XU Xiang, GENG Luyang, GONG Jianming. Oxidation Kinetics Behavior at High Temperature of TC4 Titanium Alloy[J]. Materials and Mechanical Engineering, 2018, 42(9): 33-36,46. DOI: 10.11973/jxgccl201809007 |
[5] | SUN Duan-jun, LIANG Chun-yuan, SHANG Jin-long, SONG Ya-ru, YIN Ji-hui, ZHANG Xiu-hai. Effect of Pre-oxidation Temperature on High-Temperature Cyclic Oxidation Resistance of Ni-20Cr-5Al-0.2Y2O3 Alloy[J]. Materials and Mechanical Engineering, 2017, 41(4): 39-43. DOI: 10.11973/jxgccl201704009 |
[6] | LU Jin-tao, YANG Zhen, XU Song-qian, ZHAO Hai-ping, ZHAO Xin-bao, GU Yue-feng. High Temperature Oxidation Behavior of Inconel Alloy 740H in Pure Steam[J]. Materials and Mechanical Engineering, 2015, 39(10): 37-41. DOI: 10.11973/jxgccl201510009 |
[7] | LU Xiao-hui, GAO Yuan, ZHANG Yan, WEI Wen-zu, ZHANG Guang-yao, WANG Cheng-lei. Corrosion Resistance and High Temperature Oxidation Resistance of Zr-alloyed Layer Formed on 0Cr18Ni9Ti Stainless Steel Surface[J]. Materials and Mechanical Engineering, 2015, 39(5): 42-47. |
[8] | WEI Xiang-fei, ZHANG Ping-ze, WEI Dong-bo, SHA Li-li, ZHOU Peng, ZHANG Yang. High-Temperature Oxidation Behavior of Double Glow Plasma Cr-W Alloying Layer on γ-TiAl Alloy Surface[J]. Materials and Mechanical Engineering, 2014, 38(5): 12-16. |
[9] | DAI Xiao-yu. Effects of Copper and Titanium Elements on High-Temperature Oxidation Behavior of Nickel-Based Corrosion Retistant Alloy[J]. Materials and Mechanical Engineering, 2011, 35(8): 19-21. |
[10] | PENG Qian-yun, XIONG Wei-hao, YAO Zhen-hua, ZHOU Min. Elevated Temperature Oxidation Behavior of Fe-12Cr-2.5W-0.4Ti-0.3Y2O3 Alloy by Mechanical Alloying[J]. Materials and Mechanical Engineering, 2011, 35(2): 39-42. |