• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
YANG Zhen, LU Jintao, LE Ming, ZHOU Yongli, LI Hao, YUAN Yong. Oxidation Behaviour of Incoloy800H Alloy in High-Temperature Pure Steam[J]. Materials and Mechanical Engineering, 2018, 42(1): 1-6. DOI: 10.11973/jxgccl201801001
Citation: YANG Zhen, LU Jintao, LE Ming, ZHOU Yongli, LI Hao, YUAN Yong. Oxidation Behaviour of Incoloy800H Alloy in High-Temperature Pure Steam[J]. Materials and Mechanical Engineering, 2018, 42(1): 1-6. DOI: 10.11973/jxgccl201801001

Oxidation Behaviour of Incoloy800H Alloy in High-Temperature Pure Steam

More Information
  • Received Date: December 12, 2016
  • Revised Date: August 23, 2017
  • The oxidation behaviour of Incoloy800H alloy in 750℃ and 850℃ pure steam was investigated by discontinuous weighing method, X-ray diffraction, and scanning electron microscopy. The results show that the oxidation kinetics of the tested alloy followed a parabolic law; the oxidation accelerated rapidly with rising temperature. After oxidation in 750℃ steam, an oxide layer mainly composed of (Cr, Mn)2O3 was formed on the surface of the tested alloy, discontinuous bulgy Fe3O4 was distributed on the oxide layer and Cr in the matrix under the oxide layer was oxidized internally to Cr2O3. After oxidation in 850℃ steam, a duplex oxide layer, composed of a thin outer layer of (Fe, Mn)3O4 and a thick inner layer of (Cr, Mn)2O3, was formed on the surface of the tested alloy; beneath the oxide layer, Al was oxidized inernally to Al2O3 along grain boundaries in the matrix.
  • [1]
    尹清辽,孙玉良,居怀明,等. 模块式高温气冷堆超临界蒸汽发生器设计[J]. 原子能科学技术,2006,40(6):707-713.
    [2]
    FULGER M, OHAI D, MIHALACHE M, et al. Oxidation behavior of Incoloy 800 under simulated supercritical water conditions[J]. Journal of Nuclear Materials, 2009, 385(2):288-293.
    [3]
    TAN L, ALLEN T R, YANG Y. Corrosion behavior of alloy 800H (Fe-21Cr-32Ni) in supercritical water[J]. Corrosion Science, 2011, 53(2):703-711.
    [4]
    OTSUKA N, FUJIKAWA H. Scaling of austenitic stainless steels and nickel-base alloys in high-temperature steam at 973 K[J]. Corrosion, 1991, 47(4):240-248.
    [5]
    TAN L, REN X, SRIDHARAN K, et al. Effect of shot-peening on the oxidation of alloy 800H exposed to supercritical water and cyclic oxidation[J]. Corrosion Science, 2008, 50(7):2040-2046.
    [6]
    TAN L, SRIDHARAN K, ALLEN T R. The effect of grain boundary engineering on the oxidation behavior of INCOLOY alloy 800H in supercritical water[J]. Journal of Nuclear Materials, 2006, 348(3):263-271.
    [7]
    TAN L,SRIDHARAN K,ALLEN T R,et al.Microstructure tailoring for property improvements by grain boundary engineering[J]. Journal of Nuclear Materials, 2008, 374(1/2):270-280.
    [8]
    CHEN W S, KAI W, TSAY L W, et al. The oxidation behavior of three different zones of welded Incoloy 800H alloy[J]. Nuclear Engineering and Design, 2014, 272:92-98.
    [9]
    杨珍,鲁金涛,赵新宝,等. HR3C在750℃空气和水蒸气中的高温氧化行为研究[J]. 动力工程学报,2015,35(10):859-864.
    [10]
    TALLMAN R L, GULBRANSEN E A. Dislocation and grain boundary diffusion in the growth of α-Fe2O3 whiskers and twinned platelets peculiar to gaseous oxidation[J]. Nature, 1968, 218:1046-1047.
    [11]
    VOSS D A, BUTLER E P, MITCHELL T E. The growth of hematite blades during the high temperature oxidation of iron[J]. Metallurgical Transactions A, 1982, 13(5):929-935.
    [12]
    RAYNAUD G, RAPP R. In situ observation of whiskers, pyramids and pits during the high-temperature oxidation of metals[J]. Oxidation of Metals, 1984, 21(1/2):89-102.
    [13]
    LIMOGE Y, BOCQUET J L. Selfdiffusion and point defects in iron oxides FeO, Fe3O4, α-Fe2O3[J]. Defect and Diffusion Forum, 2001, 194:1051-1056.
    [14]
    HAGEL W C, SEYBOLT A U. Cation diffusion in Cr2O3[J]. Journal of the Electrochemical Society, 1961, 108(12):1146-1152.
    [15]
    HAGEL W C. Anion diffusion in α-Cr2O3[J]. Journal of the American Ceramic Society, 1965, 48(2):70-75.
    [16]
    JUTTE R H, KOOI B J, SOMERS M A, et al. On the oxidation of α-Fe and ε-FeFe2N1-z:I. Oxidation kinetics and microstructural evolution of the oxide and nitride layers[J]. Oxidation of Metals, 1997, 48(1/2):87-109.
    [17]
    STOTT F, WEI F. High temperature oxidation of commercial austenitic stainless steels[J]. Materials Science and Technology, 1989, 5(11):1140-1147.
    [18]
    KOFSTAD P K. Nonstoichiometry, diffusion and electrical conductivity in binary metal oxides[M]. New York:Wiley-Interscience, 1972.
    [19]
    KOFSTAD P, LILLERUD K. Chromium transport through Cr2O3 scales I. On lattice diffusion of chromium[J]. Oxidation of Metals, 1982, 17(3/4):177-194.
    [20]
    GRESKOVICH C. Deviation from stoichiometry in Cr2O3 at high oxygen partial pressures[J]. Journal of the American Ceramic Society, 1984, 67(6):C111-C112.
    [21]
    LOBNIG R E, SCHMIDT H P, HENNESEN K, et al. Diffusion of cations in chromia layers grown on iron-base alloys[J]. Oxidation of Metals, 1992, 37(1/2):81-93.
    [22]
    WAGNER C. Reaktionstypen bei der oxydation von legierungen[J].Berichte der Bunsengesellschaft für Physikalische Chemie, 1959, 63(7):772-782.
    [23]
    WAGNER C. Theoretical analysis of the diffusion processes determining the oxidation rate of alloys[J]. Journal of the Electrochemical Society, 1952, 99(10):369-380.
    [24]
    SUZUOKA T. Lattice and grain boundary diffusion in polycrystals[J]. Transactions of Japan Institute of Metals, 1961, 2:25-33.
    [25]
    LAFLAMME G R,MORRAL J E. Limiting cases of subscale formation[J].Acta Metallurgica, 1978, 26(12):1791-1794.
    [26]
    KAMPMANN L, KAHLWEIT M. Zur theorie von fällungen[J]. Berichte der Bunsengesellschaft für Physikalische Chemie, 1970, 74(5):456-462.
    [27]
    WAGNER C. Mathematical analysis of the formation of periodic precipitations[J]. Journal of Colloid Science, 1950, 51(1):85-97.
    [28]
    YALI L, MORRAL J E. A local equilibrium model for internal oxidation[J].Acta Materialia,2002,50(14):3683-3691. 欢迎来稿欢迎订阅欢迎刊登广告

Catalog

    Article views (4) PDF downloads (1) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return