Citation: | CAI Zhen, ZHANG Xiancheng, TU Shantong. Effects of Ultrasonic Surface Rolling Process on Microstructure and Surface Integrity of Ti-6Al-4V Alloy[J]. Materials and Mechanical Engineering, 2018, 42(1): 7-10,17. DOI: 10.11973/jxgccl201801002 |
[1] |
YASUOKA M, WANG P, ZHANG K, et al. Improvement of the fatigue strength of SUS304 austenite stainless steel using ultrasonic nanocrystal surface modification[J]. Surface & Coatings Technology, 2013, 218(1):93-98.
|
[2] |
NALLAR K, ALTENBERGER I, NOSTER U, et al. On the influence of mechanical surface treatments-deep rolling and laser shock peening-on the fatigue behavior of Ti-6Al-4V at ambient and elevated temperatures[J]. Materials Science & Engineering A, 2003, 355(1/2):216-230.
|
[3] |
李鹏,刘道新,关艳英,等.喷丸强化对新型7055-T7751铝合金疲劳性能的影响[J]. 机械工程材料, 2015, 39(1):86-89.
|
[4] |
张志建,姚枚,李金魁,等.喷丸强化件表象疲劳极限优化研究[J]. 机械工程材料, 2003, 27(10):7-10.
|
[5] |
LU K, LU J. Surface nanocrystallization (SNC) of metallic materials-presentation of the concept behind a new approach[J]. Journal of Materials Science & Technology, 1999, 15(3):193-197.
|
[6] |
WONG C C, HARTAWAN A, TEO W K. Deep cold rolling of features on aero-engine components[J]. Procedia CIRP, 2014, 13:350-354.
|
[7] |
ALTENBERGER I. Deep rolling-The past, the present and the future[C]//International Conference on Shot Peening.[S.l.]:[s.n.], 2005.
|
[8] |
RÖTTGER K, JACOBS T L, WILCKE G. Deep rolling efficiently increases fatigue life[C]//World Tribology Congress Ⅲ.[S.l.]:[s.n.], 2005.
|
[9] |
王仁智. 表面喷丸强化机制[J]. 机械工程材料, 1988,12(5):21-25.
|
[10] |
李伟, 李应红, 何卫锋,等. 激光冲击强化技术的发展和应用[J]. 激光与光电子学进展, 2008, 45(12):15-19.
|
[11] |
PREVEY P S, SHEPARD M, RAVINDRANATH R A, et al. Case studies of fatigue life improvement using low plasticity burnishing in gas turbine engine applications[C]//Proceeding of ASME Turbo Expo 2003. Georgia:[s.n.], 2003.
|
[12] |
孙明霞, 梁春华. 低塑性抛光技术在压气机叶片上的发展与应用[J]. 航空制造技术, 2014, 451(7):57-59.
|
[13] |
PREVEY P S, SHEPARD M J, SMITH P R. The effect of low plasticity burnishing on the HCF performance and FOD resistance of Ti-6Al-4V[C]//6th National Turbine Engine High Cycle Fatigue(HCF) Conference.[S.l.]:[s.n.], 2001.
|
[14] |
TAO N R, SUI M L, LU J, et al. Surface nanocrystallization of iron induced by ultrasonic shot peening[J]. Nanostructured Materials, 1999, 11(4):433-440.
|
[15] |
邹途祥, 卫英慧, 侯利锋,等. 纯铝表面机械研磨纳米化后的显微组织和硬度[J]. 机械工程材料, 2009, 33(1):40-43.
|
[16] |
王宇, 黄敏, 高惠临,等. 表面机械研磨处理对X80管线钢焊接接头组织与性能的影响[J]. 机械工程材料, 2009, 33(8):50-53.
|
[17] |
LU K, LU J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment[J]. Materials Science & Engineering A, 2004, 375/376/377:38-45.
|
[18] |
LIU Y, ZHAO X, WANG D. Determination of the plastic properties of materials treated by ultrasonic surface rolling process through instrumented indentation[J]. Materials Science & Engineering A, 2014, 600:21-31.
|
[19] |
CHOKSHI A H, ROSEN A, KARCH J, et al. On the validity of the Hall-Petch relationship in nanocrystalline materials[J]. Scripta Metallurgica, 1989, 23(10):1679-1683.
|
[20] |
JANG J S C, CKOCH C C. The Hall-Petch relationship in nanocrystallization iron produced by ball milling[J]. Scripta Metallurgical et Materialia, 1990, 24(8):1599-1604.
|
[21] |
HUGHESG D, SMITH S D, PANDE C S, et al. Hall-Petch strengthening for the microhardness of twelve nanometer grain diameter electrodeposited nickel[J]. Scripta Metallurgica, 1986, 20(1):93-97.
|
[22] |
CHAHARDEHI A, BRENNAN F P, STEUWER A. The effect of residual stresses arising from laser shock peening on fatigue crack growth[J]. Engineering Fracture Mechanics, 2010, 77(11):2033-2039.
|