• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
CAI Zhen, ZHANG Xiancheng, TU Shantong. Effects of Ultrasonic Surface Rolling Process on Microstructure and Surface Integrity of Ti-6Al-4V Alloy[J]. Materials and Mechanical Engineering, 2018, 42(1): 7-10,17. DOI: 10.11973/jxgccl201801002
Citation: CAI Zhen, ZHANG Xiancheng, TU Shantong. Effects of Ultrasonic Surface Rolling Process on Microstructure and Surface Integrity of Ti-6Al-4V Alloy[J]. Materials and Mechanical Engineering, 2018, 42(1): 7-10,17. DOI: 10.11973/jxgccl201801002

Effects of Ultrasonic Surface Rolling Process on Microstructure and Surface Integrity of Ti-6Al-4V Alloy

More Information
  • Received Date: February 26, 2017
  • Revised Date: November 14, 2017
  • The ultrasonic surface rolling process (USRP) was performed on the annealed Ti-6Al-4V alloy using employing the rectangular-ambulatory-plane machining path. The microstructure and surface integrity of Ti-6Al-4V alloy after USRP were characterized by equipments such as optical microscope, transmission electron microscope, vickers indenter, X-ray diffraction residual stress analyzer and surface three-dimensional topography. The results show that a plastic deformation layer with around 300 μm thickness was formed on the surface of Ti-6Al-4V alloy after USRP. The surface of plastic deformation layer was the equiaxial nanocrystal layer and the subsurface was the long strip shaped nanocrystalline laminar layer with the same grain orientation. The maximum mirco-hardness of Ti-6Al-4V alloy was 390 HV and the surface roughness reduced from 0.76 μm to 0.23 μm after USRP. The residual compressive stress of Ti-6Al-4V alloy increased first and then decreased with the increase of distance from surface.
  • [1]
    YASUOKA M, WANG P, ZHANG K, et al. Improvement of the fatigue strength of SUS304 austenite stainless steel using ultrasonic nanocrystal surface modification[J]. Surface & Coatings Technology, 2013, 218(1):93-98.
    [2]
    NALLAR K, ALTENBERGER I, NOSTER U, et al. On the influence of mechanical surface treatments-deep rolling and laser shock peening-on the fatigue behavior of Ti-6Al-4V at ambient and elevated temperatures[J]. Materials Science & Engineering A, 2003, 355(1/2):216-230.
    [3]
    李鹏,刘道新,关艳英,等.喷丸强化对新型7055-T7751铝合金疲劳性能的影响[J]. 机械工程材料, 2015, 39(1):86-89.
    [4]
    张志建,姚枚,李金魁,等.喷丸强化件表象疲劳极限优化研究[J]. 机械工程材料, 2003, 27(10):7-10.
    [5]
    LU K, LU J. Surface nanocrystallization (SNC) of metallic materials-presentation of the concept behind a new approach[J]. Journal of Materials Science & Technology, 1999, 15(3):193-197.
    [6]
    WONG C C, HARTAWAN A, TEO W K. Deep cold rolling of features on aero-engine components[J]. Procedia CIRP, 2014, 13:350-354.
    [7]
    ALTENBERGER I. Deep rolling-The past, the present and the future[C]//International Conference on Shot Peening.[S.l.]:[s.n.], 2005.
    [8]
    RÖTTGER K, JACOBS T L, WILCKE G. Deep rolling efficiently increases fatigue life[C]//World Tribology Congress Ⅲ.[S.l.]:[s.n.], 2005.
    [9]
    王仁智. 表面喷丸强化机制[J]. 机械工程材料, 1988,12(5):21-25.
    [10]
    李伟, 李应红, 何卫锋,等. 激光冲击强化技术的发展和应用[J]. 激光与光电子学进展, 2008, 45(12):15-19.
    [11]
    PREVEY P S, SHEPARD M, RAVINDRANATH R A, et al. Case studies of fatigue life improvement using low plasticity burnishing in gas turbine engine applications[C]//Proceeding of ASME Turbo Expo 2003. Georgia:[s.n.], 2003.
    [12]
    孙明霞, 梁春华. 低塑性抛光技术在压气机叶片上的发展与应用[J]. 航空制造技术, 2014, 451(7):57-59.
    [13]
    PREVEY P S, SHEPARD M J, SMITH P R. The effect of low plasticity burnishing on the HCF performance and FOD resistance of Ti-6Al-4V[C]//6th National Turbine Engine High Cycle Fatigue(HCF) Conference.[S.l.]:[s.n.], 2001.
    [14]
    TAO N R, SUI M L, LU J, et al. Surface nanocrystallization of iron induced by ultrasonic shot peening[J]. Nanostructured Materials, 1999, 11(4):433-440.
    [15]
    邹途祥, 卫英慧, 侯利锋,等. 纯铝表面机械研磨纳米化后的显微组织和硬度[J]. 机械工程材料, 2009, 33(1):40-43.
    [16]
    王宇, 黄敏, 高惠临,等. 表面机械研磨处理对X80管线钢焊接接头组织与性能的影响[J]. 机械工程材料, 2009, 33(8):50-53.
    [17]
    LU K, LU J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment[J]. Materials Science & Engineering A, 2004, 375/376/377:38-45.
    [18]
    LIU Y, ZHAO X, WANG D. Determination of the plastic properties of materials treated by ultrasonic surface rolling process through instrumented indentation[J]. Materials Science & Engineering A, 2014, 600:21-31.
    [19]
    CHOKSHI A H, ROSEN A, KARCH J, et al. On the validity of the Hall-Petch relationship in nanocrystalline materials[J]. Scripta Metallurgica, 1989, 23(10):1679-1683.
    [20]
    JANG J S C, CKOCH C C. The Hall-Petch relationship in nanocrystallization iron produced by ball milling[J]. Scripta Metallurgical et Materialia, 1990, 24(8):1599-1604.
    [21]
    HUGHESG D, SMITH S D, PANDE C S, et al. Hall-Petch strengthening for the microhardness of twelve nanometer grain diameter electrodeposited nickel[J]. Scripta Metallurgica, 1986, 20(1):93-97.
    [22]
    CHAHARDEHI A, BRENNAN F P, STEUWER A. The effect of residual stresses arising from laser shock peening on fatigue crack growth[J]. Engineering Fracture Mechanics, 2010, 77(11):2033-2039.

Catalog

    Article views (6) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return