Citation: | GUO Hongwei, HAN Jianmin, LI Zhiqiang, LIU Xiaolong. Effect of Microaddition of Vanadium on Superplasticity of CrNiMo Series Forged Steel[J]. Materials and Mechanical Engineering, 2018, 42(2): 1-7,94. DOI: 10.11973/jxgccl201802001 |
[1] |
ALDEN T H. Review topics in superplasticity[M]//Plastic Deformation of Materials. London:Academic Press, 1975:225-266.
|
[2] |
NAYDENKIN E V, RATOCHKA I V, MISHIN I P, et al. The effect of interfaces on mechanical and superplastic properties of titanium alloys[J]. Journal of Materials Science, 2016, 52(8):4164-4171.
|
[3] |
PANICKER R, CHOKSHI A H, MISHRA R K,et al. Microstructural evolution and grain boundary sliding in a superplastic magnesium AZ31 alloy[J]. Acta Materialia, 2009, 57(13):3683-3693.
|
[4] |
CHENG L, LI J, XUE X,et al. Superplastic deformation mechanisms of high Nb containing TiAl alloy with (α2+γ) microstructure[J]. Intermetallics, 2016, 75:62-71.
|
[5] |
OPOKU M, KANAKALA R, CHARIT I. Superplasticity in ceramics at high temperature[M]//Advances in Materials Science for Environmental and Energy Technologies IV:Ceramic Transactions, Volume 253.[S.l.]:John Wiley & Sons, Inc, 2015:205-217.
|
[6] |
SHERBY O D, WADSWORTH J. Superplasticity-Recent advances and future directions[J]. Progress in Materials Science, 1989, 33(3):169-221.
|
[7] |
CHAN D, STACHOWIAK G W. Review of automotive brake friction materials[J]. Proceedings of the Institution of Mechanical Engineers, 2004, 218(9):953-966.
|
[8] |
GIVONI M. Development and impact of the modern high-speed train:A review[J]. Transport Reviews, 2006, 26(5):593-611.
|
[9] |
LI Z, HAN J, LI W, et al. Low cycle fatigue behavior of Cr-Mo-V low alloy steel used for railway brake discs[J]. Materials & Design, 2014, 56:146-157.
|
[10] |
LI Z, HAN J, YANG Z, et al. The effect of braking energy on the fatigue crack propagation in railway brake discs[J]. Engineering Failure Analysis, 2014, 44:272-284.
|
[11] |
YANG Z, HAN J, LI W,et al. Analyzing the mechanisms of fatigue crack initiation and propagation in CRH EMU brake discs[J]. Engineering Failure Analysis, 2013, 34:121-128.
|
[12] |
DAS S K, SIVAPRASAD S, DAS S,et al. The effect of variation of microstructure on fracture mechanics parameters of HSLA-100 steel[J]. Materials Science and Engineering A, 2006, 431(1/2):68-79.
|
[13] |
PANDIT A, MURUGAIYAN A, PODDER A S,et al. Strain induced precipitation of complex carbonitrides in Nb-V and Ti-V microalloyed steels[J]. Scripta Materialia, 2005, 53(11):1309-1314.
|
[14] |
SCOTT C P, FAZELI F, AMIRKHIZ B S, et al. Structure-properties relationship of ultra-fine grained V-microalloyed dual phase steels[J]. Materials Science and Engineering A, 2017, 703:293-303.
|
[15] |
HOLAPPA L, OLLILAINEN V, KASPRZAK W. The effect of silicon and vanadium alloying on the microstructure of air cooled forged HSLA steels[J]. Journal of Materials Processing Technology, 2001, 109(1):78-82.
|
[16] |
解万里,孟宪珩. 钒对低合金钢的强化机理分析[J].河北冶金, 2006(3):41-44.
|
[17] |
徐为民,詹静, 张微啸,等.TP439不锈钢在高温高压水中的应力腐蚀开裂行为[J].腐蚀与防护, 2016, 37(9):723-726.
|
[18] |
钟群鹏,赵子华. 断口学[M].北京:高等教育出版社, 2006:155.
|
[19] |
刘俊,黄振翅, 毕雅敏, 等. 铬镍钼钛钢高温组织和高温性能研究[J].机械工程材料, 2001, 25(11):11-13.
|
[20] |
葛永成,徐雪峰, 张杰刚. 5083铝合金的高温应变速率循环超塑性[J].机械工程材料, 2014, 38(8):97-100.
|
[21] |
何鸿博,周文龙, 陈国清,等. 晶粒尺寸对TC4钛合金超塑性行为及变形机理的影响[J].机械工程材料, 2009, 33(3):78-82.
|
[22] |
魏世忠,李炎, 吴逸贵,等. 高钒高速钢中碳化钒的微细结构分析[J].电子显微学报, 2005, 24(5):479-483.
|
[23] |
KIM W Y, HANADA S, TAKASUGI T. Flow behavior and microstructure of Co3Ti intermetallic alloy during superplastic deformation[J]. Acta Materialia, 1998, 46(10):3593-3604.
|