Citation: | LIU Fei, YAN Zhifeng, HE Xiuli, WANG Fenglan, WANG Zhongnan, LI Chenghao, LI Yonglian. Work-Hardening/Softening Behavior and Temperature Evolution of AZ31B Magnesium Alloy During High Cycle Fatigue Process[J]. Materials and Mechanical Engineering, 2018, 42(2): 27-30,34. DOI: 10.11973/jxgccl201802006 |
[1] |
韩继龙,孙庆国. 金属镁生产工艺进展[J]. 盐湖研究, 2009, 16(4):59-65.
|
[2] |
CHEN X H, CHEN X, YU D J,et al. Recent progresses in experimental investigation and finite element analysis of ratcheting in pressurized piping[J]. International Journal of Pressure Vessels and Piping, 2013, 101:113-142.
|
[3] |
何柏林,周尚谕. 镁合金焊接接头疲劳性能研究现状和发展趋势[J].热加工工艺, 2012, 41(15):185-187.
|
[4] |
BELL J. The experimental foundations of solid mechanics[M]. New York:Springer-Verlag, 1973.
|
[5] |
AMIRI M, KHONSARI M M. Rapid determination of fatigue failure based on temperature evolution:Fully reversed bending load[J]. International Journal of Fatigue, 2010, 32(2):382-389.
|
[6] |
LA ROSA G, RISITANO A. Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components[J]. International Journal of Fatigue, 2000, 22(1):65-73.
|
[7] |
FARGIONE G, GERACI A, LA ROSA G, et al. Rapid determination of the fatigue curve by the thermographic method[J]. International Journal of Fatigue, 2002, 24(1):11-19.
|
[8] |
YAN Z F, ZHANG H X, WANG W X,et al. Temperature evolution mechanism of AZ31B magnesium alloy during high-cycle fatigue process[J]. Theoretical and Applied Fracture Mechanics, 2014, 70:30-38.
|
[9] |
KNEZEVIC M, LEVINSON A, HARRIS R, et al. Deformation twinning in AZ31:Influence on strain hardening and texture evolution[J]. Acta Materialia, 2010, 58(19):6230-6242.
|
[10] |
吴俊良,文玉华, 李宁,等. 两种方法分析高锰钢和18-8不锈钢加工硬化行为的对比[J]. 机械工程材料, 2009, 33(9):68-71.
|
[11] |
袁子洲,匡毅, 陈学定,等. ZGMn18Cr2Mo超高锰钢加工硬化机理研究[J]. 机械工程材料, 2005, 29(5):9-11.
|
[12] |
李守新,黄毅, 师昌绪. 金属板材在弹塑性形变过程中热场的有限元分析[J]. 金属学报, 1985, 21(1):101-109.
|