• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
ZHANG Zhao, HU Chaoping. Effect of Rotation Speed of Stirring Head on Grain Growth in Friction Stir Welding of 2024-T3 Aluminum Alloy[J]. Materials and Mechanical Engineering, 2018, 42(3): 80-86. DOI: 10.11973/jxgccl201803015
Citation: ZHANG Zhao, HU Chaoping. Effect of Rotation Speed of Stirring Head on Grain Growth in Friction Stir Welding of 2024-T3 Aluminum Alloy[J]. Materials and Mechanical Engineering, 2018, 42(3): 80-86. DOI: 10.11973/jxgccl201803015

Effect of Rotation Speed of Stirring Head on Grain Growth in Friction Stir Welding of 2024-T3 Aluminum Alloy

More Information
  • Received Date: December 21, 2016
  • Revised Date: November 15, 2017
  • Three-dimensional Monte Carlo model was applied to simulate the grain growth process of the stirring zone during friction stir welding of AA2024-T3 aluminum alloy. The relationship between the Monte Carlo steps and the temperature history and time history of the stirring zone was established. The variation of grain size in the stirring zone at different rotation speeds of stirring head was simulated and verified by the experimental values under the same welding conditions. The results show that the three-dimensional Monte Carlo model could reflect the changes of grain size in the stirring zone at different rotation speeds of stirring head well. The simulating predicted values of the average grain size were in good agreement with the experimental values. The average grain size in the stirring zone increased with the increase of the rotation speed of stirring head. The average grain size in the advancing side of the stirring head was slightly larger than that in the retreating side and the average grain size of the upper surface of the center seam in the stirring zone was the largest when the rotation speed of stirring head was the same.
  • [1]
    MISHRA R S, MA Z Y. Friction stir welding and processing[J]. Materials Science and Engineering R Reports, 2005, 50(1/2):1-78.
    [2]
    NANDAN R, DEBROY T, BHADESHIA H K D H. Recent advances in friction-stir welding-Process, weldment structure and properties[J]. Progress Materials Science, 2008, 53(6):980-1023.
    [3]
    PAN W X, LI D S, TARTAKOVSKY A M, et al. A new smoothed particle hydrodynamics non-Newtonian model for friction stir welding:Process modeling and simulation of microstructure evolution in a magnesium alloy[J]. International Journal of Plasticity, 2013, 48(3):189-204.
    [4]
    CHANG C I, LEE C J, HUANG J C. Relationship between grain size and Zener-Holloman parameter during friction stir processing in AZ31 Mg alloys[J]. Scripta Materialia, 2004, 51(6):509-514.
    [5]
    张昭, 吴奇. 搅拌针对搅拌摩擦焊接搅拌区晶粒影响研究[J]. 兵器材料科学与工程,2014, 37(5):32-35.
    [6]
    张晓宁. 蒙特卡洛法模拟Ti-IF钢退火状态下的晶粒长大[J]. 金属热处理, 2015, 40(7):172-175.
    [7]
    CHO H H, HONG S T, ROH J H, et al. Three-dimensional numerical and experimental investigation on friction stir welding processes of ferritic stainless steel[J]. Acta Materialia, 2013, 61(7):2649-2661.
    [8]
    邹青峰, 钱炜, 安丽, 等. 搅拌针形状对2A14铝合金搅拌摩擦焊接头组织和拉伸性能的影响[J]. 机械工程材料, 2015, 39(5):37-41.
    [9]
    张昭, 陈金涛, 张洪武. 搅拌头尺寸变化对搅拌摩擦焊接的影响[J]. 材料工程, 2006, 34(1):19-23.
    [10]
    窦作勇, 张鹏程, 李云, 等. 铝合金搅拌摩擦焊接头内部残余应力的短波长X射线测试[J]. 机械工程材料, 2015, 39(3):107-110.
    [11]
    张昭, 吴奇, 张洪武. 转速对搅拌摩擦焊接搅拌区晶粒尺寸影响[J]. 材料工程, 2015, 43(7):1-7.
    [12]
    SU H, WU C S, PITTNER A, et al. Thermal energy generation and distribution in friction stir welding of aluminum alloys[J]. Energy, 2014, 77:720-731.
    [13]
    YANG Z, SISTA S, ELMER J W, et al. Three dimensional Monte Carlo simulation of grain growth during GTA welding of titanium[J]. Acta Materialia, 2000, 48(20):4813-4825.
    [14]
    张昭, 吴奇, 万震宇, 等. 基于蒙特卡洛方法的搅拌摩擦焊接晶粒生长模拟[J]. 塑性工程学报, 2015,22(4):172-177.
    [15]
    SISTA S, YANG Z, DEBROY T. Three-dimensional Monte Carlo simulation of grain growth in the heat-affected zone of a 2.25Cr-1Mo steel weld[J]. Metallurgical and Materials Transaction B, 2000, 31(3):529-536.
    [16]
    GAO J H, THOMPSON R G. Real time-temperture models for Monte Carlo simulations of normal grain growth[J]. Acta Materialia, 1996, 44(11):4565-4570.
    [17]
    DRIVER G W, JOHNSON K E. Interpretation of fusion and vaporisation entropies for various classes of substances, with a focus on salts[J]. Journal of Chemical Thermodynamics, 2014, 70:207-213.
    [18]
    YANG C C, ROLLETT A D, MULLINS W W. Measuring relative grain boundary energies and mobilities in an aluminum foil from triple junction geometry[J]. Scripta Materialia, 2001, 44(12):2735-2740.
    [19]
    KIRCH D M, JANNOT E, MORA L A B, et al. Inclination dependence of grain boundary energy and its impact on the faceting and kinetics of tilt grain boundaries in aluminum[J]. Acta Materialia, 2008, 56(18):4998-5011.
    [20]
    梅平, 甘光奉, 雷秀斌,等. 估算金属熔化热和熔化熵的经验公式[J]. 科学通报, 1989(8):80-80.
    [21]
    KHODIR S A, SHIBAYANAGI T, NAKA M. Microstructure and mechanical properties of friction stir welded AA2024-T3 aluminum alloy[J]. Materials Transactions, 2006, 47(1):185-193.
    [22]
    NORMAN A F, BROUGH I, PRANGNELL P B. High resolution EBSD analysis of the grain structure in an AA2024 friction stir weld[C]//Materials Science Forum. Switzerland:Trans Tech Publications, 2000:1713-1718.

Catalog

    Article views (3) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return