Citation: | ZHANG Zhao, HU Chaoping. Effect of Rotation Speed of Stirring Head on Grain Growth in Friction Stir Welding of 2024-T3 Aluminum Alloy[J]. Materials and Mechanical Engineering, 2018, 42(3): 80-86. DOI: 10.11973/jxgccl201803015 |
[1] |
MISHRA R S, MA Z Y. Friction stir welding and processing[J]. Materials Science and Engineering R Reports, 2005, 50(1/2):1-78.
|
[2] |
NANDAN R, DEBROY T, BHADESHIA H K D H. Recent advances in friction-stir welding-Process, weldment structure and properties[J]. Progress Materials Science, 2008, 53(6):980-1023.
|
[3] |
PAN W X, LI D S, TARTAKOVSKY A M, et al. A new smoothed particle hydrodynamics non-Newtonian model for friction stir welding:Process modeling and simulation of microstructure evolution in a magnesium alloy[J]. International Journal of Plasticity, 2013, 48(3):189-204.
|
[4] |
CHANG C I, LEE C J, HUANG J C. Relationship between grain size and Zener-Holloman parameter during friction stir processing in AZ31 Mg alloys[J]. Scripta Materialia, 2004, 51(6):509-514.
|
[5] |
张昭, 吴奇. 搅拌针对搅拌摩擦焊接搅拌区晶粒影响研究[J]. 兵器材料科学与工程,2014, 37(5):32-35.
|
[6] |
张晓宁. 蒙特卡洛法模拟Ti-IF钢退火状态下的晶粒长大[J]. 金属热处理, 2015, 40(7):172-175.
|
[7] |
CHO H H, HONG S T, ROH J H, et al. Three-dimensional numerical and experimental investigation on friction stir welding processes of ferritic stainless steel[J]. Acta Materialia, 2013, 61(7):2649-2661.
|
[8] |
邹青峰, 钱炜, 安丽, 等. 搅拌针形状对2A14铝合金搅拌摩擦焊接头组织和拉伸性能的影响[J]. 机械工程材料, 2015, 39(5):37-41.
|
[9] |
张昭, 陈金涛, 张洪武. 搅拌头尺寸变化对搅拌摩擦焊接的影响[J]. 材料工程, 2006, 34(1):19-23.
|
[10] |
窦作勇, 张鹏程, 李云, 等. 铝合金搅拌摩擦焊接头内部残余应力的短波长X射线测试[J]. 机械工程材料, 2015, 39(3):107-110.
|
[11] |
张昭, 吴奇, 张洪武. 转速对搅拌摩擦焊接搅拌区晶粒尺寸影响[J]. 材料工程, 2015, 43(7):1-7.
|
[12] |
SU H, WU C S, PITTNER A, et al. Thermal energy generation and distribution in friction stir welding of aluminum alloys[J]. Energy, 2014, 77:720-731.
|
[13] |
YANG Z, SISTA S, ELMER J W, et al. Three dimensional Monte Carlo simulation of grain growth during GTA welding of titanium[J]. Acta Materialia, 2000, 48(20):4813-4825.
|
[14] |
张昭, 吴奇, 万震宇, 等. 基于蒙特卡洛方法的搅拌摩擦焊接晶粒生长模拟[J]. 塑性工程学报, 2015,22(4):172-177.
|
[15] |
SISTA S, YANG Z, DEBROY T. Three-dimensional Monte Carlo simulation of grain growth in the heat-affected zone of a 2.25Cr-1Mo steel weld[J]. Metallurgical and Materials Transaction B, 2000, 31(3):529-536.
|
[16] |
GAO J H, THOMPSON R G. Real time-temperture models for Monte Carlo simulations of normal grain growth[J]. Acta Materialia, 1996, 44(11):4565-4570.
|
[17] |
DRIVER G W, JOHNSON K E. Interpretation of fusion and vaporisation entropies for various classes of substances, with a focus on salts[J]. Journal of Chemical Thermodynamics, 2014, 70:207-213.
|
[18] |
YANG C C, ROLLETT A D, MULLINS W W. Measuring relative grain boundary energies and mobilities in an aluminum foil from triple junction geometry[J]. Scripta Materialia, 2001, 44(12):2735-2740.
|
[19] |
KIRCH D M, JANNOT E, MORA L A B, et al. Inclination dependence of grain boundary energy and its impact on the faceting and kinetics of tilt grain boundaries in aluminum[J]. Acta Materialia, 2008, 56(18):4998-5011.
|
[20] |
梅平, 甘光奉, 雷秀斌,等. 估算金属熔化热和熔化熵的经验公式[J]. 科学通报, 1989(8):80-80.
|
[21] |
KHODIR S A, SHIBAYANAGI T, NAKA M. Microstructure and mechanical properties of friction stir welded AA2024-T3 aluminum alloy[J]. Materials Transactions, 2006, 47(1):185-193.
|
[22] |
NORMAN A F, BROUGH I, PRANGNELL P B. High resolution EBSD analysis of the grain structure in an AA2024 friction stir weld[C]//Materials Science Forum. Switzerland:Trans Tech Publications, 2000:1713-1718.
|