• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
LI Shasha, ZHANG Ganghua, ZENG Tao. Research Progress on Structure Phase Transition and Physical Properties of Photoelectric Materials Under High-Pressure[J]. Materials and Mechanical Engineering, 2018, 42(6): 1-6. DOI: 10.11973/jxgccl201806001
Citation: LI Shasha, ZHANG Ganghua, ZENG Tao. Research Progress on Structure Phase Transition and Physical Properties of Photoelectric Materials Under High-Pressure[J]. Materials and Mechanical Engineering, 2018, 42(6): 1-6. DOI: 10.11973/jxgccl201806001

Research Progress on Structure Phase Transition and Physical Properties of Photoelectric Materials Under High-Pressure

More Information
  • Received Date: April 27, 2018
  • Revised Date: May 11, 2018
  • High-pressure technique can efficiently tune the crystal lattice and electronic state of photoelectric materials. It is a feasible route to adjust physical properties of photoelectric materials, and an important method for synthesizing new photoelectric materials. A review of the high-pressure research progress on photoelectric materials is summarized. The effects of high-pressure condition on the crystal structure, electronic configuration and physical properties of photoelectric materials are described. The mechanism of enhancing light absorption, conductivity and photoelectric performance is analyzed. The intrinsic relation between the pressure-induced structural phase transition and physical properties is discussed. The development possibility of the high-pressure research on photoelectric materials is in prospect.
  • [1]
    YANG S Y, SEIDEL J, BYRNES S J, et al. Above-bandgap voltages from ferroelectric photovoltaic devices[J]. Nature Nanotechnology, 2010, 5:143-147.
    [2]
    蔡苇,符春林,高家诚,等.铁电薄膜光伏效应及形成机制研究进展[J].真空科学与技术学报,2012,32(7):559-565.
    [3]
    JAFFE A, LIN Y, MAO W L, et al. Pressure-induced conductivity and yellow-to-black piezochromism in a layered Cu-Cl hybrid perovskite[J]. Journal of the American Chemical Society, 2015, 137(4):1673-1678.
    [4]
    MAO W L, WANG L, DING Y, et al. Distortions and stabilization of simple-cubic calcium at high pressure and low temperature[J]. Proceedings of the National Academy of Sciences of the United State of America, 2010, 107(22):9965-9968.
    [5]
    MA Y, EREMETS M, OGANOV A R, et al. Transparent dense sodium[J]. Nature, 2009, 458(7235):182-185.
    [6]
    YAO M G, WANG T Y, YAO Z, et al. Pressure-driven topological transformations of iodine confined in one-dimensional channels[J]. The Journal of Physical Chemistry C, 2013, 117(47):25052-25058.
    [7]
    ZHANG M, DANG Y Q, LIU T Y, et al. Pressure-induced fluorescence enhancement of the BSA-protected gold nanoclusters and the corresponding conformational changes of protein[J]. The Journal of Physical Chemistry C, 2013, 117(1):639-647.
    [8]
    LI Q, LI S, WANG K, et al. Compression studies of face-to-face п-stacking interaction in sodium squarate salts:Na2C4O4 and Na2C4O4·3H2O[J]. The Journal of Chemical Physics, 2012,137(18):184905.
    [9]
    DROZDOV A P, EREMETS M I, TROYAN I A, et al. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system[J]. Nature, 2015, 525(7567):73-76.
    [10]
    EREMETS M I,TROYAN I A. Conductive dense hydrogen[J]. Nature Materials, 2011, 10(12):927-931.
    [11]
    BENKHETTOU N, RACHED D, RABAH M. Ab-initio calculation of stability and structural properties of cadmium chalcogenides CdS, CdSe, and CdTe under high pressure[J]. Czechoslovak Journal of Physics, 2006, 56(4):409-418.
    [12]
    ZHAO J G,YANG L X, YU Z H, et al. Structural phase transitions and metallized phenomena in arsenic telluride under high pressure[J]. Inorganic Chemistry, 2016, 55(8):3907-3914.
    [13]
    赵景庚,杨留响,于振海,等.A2B3型金属硫族化合物的高压结构和物性研究[C]//第十八届中国高压科学学术会议缩编文集. 成都:中国物理学会,2016.
    [14]
    GONZÁLEZ J, RINCÓN C. Optical absorption and phase transitions in CuInSe2 and CuInS2 single crystals at high pressure[J].Journal of Applied Physics,1989, 65(5):2031-2034.
    [15]
    BEISTER H J, VES S, HONLE W, et al. Structural phase transitions and optical absorption of LiInSe2 under pressure[J]. Physical Review B, 1991,43:9642.
    [16]
    GONZALEZ J, RINCÓN C. Optical absorption and phase transitions in Cu-Ⅲ-Ⅵ2 compound semiconductors at high pressure[J]. Journal of Physics and Chemistry of Solids, 1990, 51(9):1093-1097.
    [17]
    GONZÁLEZ J, CALDERÓN J, TINOCO T, et al. CuGa(SxSe1-x)2 alloys at high pressure:Optical absorption and X-ray diffraction studies[J]. Journal of Physics and Chemistry of Solids,1995,56(3/4):507-516.
    [18]
    PLUENGPHON P, BOVORNRATANARAKS T, PINSOOK U, et al. The effects of Na on high pressure phases of CuIn0.5Ga0.5Se2 from ab initio calculation[J]. Journal of Physics:Condensed Matter, 2012, 24:095802.
    [19]
    NAGANE S, BANSODE U, GAME O, et al. CH3NH3PbI(3-x)(BF4)x:Molecular ion substituted hybrid perovskite[J]. Chemical Communications, 2014, 50(68):9741-9744.
    [20]
    GREEN M A, HO-BAILLIE A, SNAITH H J. The emergence of perovskite solar cells[J]. Nature Photonics, 2014, 8(7):506-514.
    [21]
    BURSCHKA J, PELLET N, MOON S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499(7458):316-319.
    [22]
    HODES G. Perovskite-based solar cells[J].Science, 2013, 342(6156):317-318.
    [23]
    SONG J Z, XU L M, LI J H, et al. Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices[J]. Advanced Materials, 2016, 28(24):4861-4869.
    [24]
    PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I):Novel optoelectronic materials showing bright emission with wide color gamut[J].Nano Letters, 2015, 15(6):3692-3696.
    [25]
    ZHANG L, ZENG Q X, WANG K. Pressure-induced structural and optical properties of inorganic halide perovskite CsPbBr3[J]. The Journal of Physical Chemistry Letters, 2017, 8(16):3752-3758.
    [26]
    BEIMBORN J C, PORNTHIP T Y, DUKOVIC G, et al. Pressure response of photoluminescence in cesium lead iodide perovskite nanocrystals[J]. The Journal of Chemical Physics, 2018.DOI: 10.1021/acs.jpcc.8b03280.
    [27]
    NAGAOKA Y, KATIE H K, LI Y P, et al. Nanocube superlattices of cesium lead bromide perovskites and pressure-induced phase transformations at atomic and mesoscale levels[J]. Advanced Materials, 2017,29:1606666.
    [28]
    MITZI D B, WANG S, FIELD C A, et al. Conducting layered organic-inorganic halides containing <110>-oriented perovskite sheets[J]. Science, 1995, 267(5203):1473-1476.
    [29]
    LANG L, YANG J H, LIU H R, et al. First-principles study on the electronic and optical properties of cubic ABX3halide perovskites[J]. Physics Letters A, 2014, 378(3):290-293.
    [30]
    STOUMPOS C C, MALLIAKAS C D, KANATZIDIS M G. Semiconducting tin and lead iodide perovskites with organic cations:Phase transitions,high mobilities, and near-infrared photoluminescent properties[J]. Inorganic Chemistry, 2013, 52(15):9019-9038.
    [31]
    UMARI P, MOSCONI E, DE ANGELIS F. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications[J]. Scientific Reports, 2014, 4:4467-4473.
    [32]
    关丽,李明军,李旭,等.有机卤化物钙钛矿太阳能电池的研究进展[J].科学通讯,2015,60(7):581-592.
    [33]
    邵景珍,董伟伟,邓赞红,等.基于有机金属卤化物钙钛矿材料的全固态太阳能电池研究进展[J].功能材料,2014,45(24):24008-241013.
    [34]
    SWAINSON I P, TUCKER M G, WILSON D J, et al. Pressure response of an organic-inorganic perovskite:Methylammonium lead bromide[J]. Chemistry of Materials, 2007, 19(10):2401-2405.
    [35]
    WANG Y G, LÜ X J, YANG W G, et al. Pressure-induced phase transformation, reversible amorphization,and anomalous visible light response in organolead bromide perovskite[J]. Journal of the American Chemical Society, 2015, 137(34):11144-11149.
    [36]
    LÜ X J, WANG Y G, STOUMPOS C C, et al. Enhanced structural stability and photo responsiveness of CH3NH3SnI3 perovskite via pressure-induced amorphization and recrystallization[J]. Advanced Materials, 2016, 28(39):8663-8668.
    [37]
    LÜ X J, YANG W G, QUAN Z W, et al. Enhanced electron transport in Nb-doped TiO2 nanoparticles via pressure-induced phase transitions[J]. Journal of the American Chemical Society, 2014, 136(1):419-426.
    [38]
    LÜ X J, HU Q Y, YANG W G, et al. Pressure-induced amorphization in single-crystal Ta2O5 nanowires:A kinetic mechanism and improved electrical conductivity[J]. Journal of the American Chemical Society, 2013, 135(37):13947-13953.
    [39]
    HAUMONT R, BOUVIER P, PASHKIN A, et al.Effect of high pressure on multiferroic BiFeO3[J]. Physical Review B, 2009, 79(18):184110.
    [40]
    ZHANG G H, LIU F L, GU T T, et al. Enhanced ferroelectric and visible-light photoelectric properties in multiferroic KBiFe2O5 via pressure-induced phase transition[J]. Advanced Electronic Materials, 2017, 3(3):1600498.

Catalog

    Article views (6) PDF downloads (1) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return