• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
ZENG Meiqin, LU Zhongchen, CHEN Jintian, SONG Kaiqiang, HU Renzong, ZHU Min. Research Progress on Al-based Sliding Bearing Alloys[J]. Materials and Mechanical Engineering, 2018, 42(6): 7-14. DOI: 10.11973/jxgccl201806002
Citation: ZENG Meiqin, LU Zhongchen, CHEN Jintian, SONG Kaiqiang, HU Renzong, ZHU Min. Research Progress on Al-based Sliding Bearing Alloys[J]. Materials and Mechanical Engineering, 2018, 42(6): 7-14. DOI: 10.11973/jxgccl201806002

Research Progress on Al-based Sliding Bearing Alloys

More Information
  • Received Date: April 27, 2017
  • Revised Date: April 29, 2018
  • The research and application situation of Al-based sliding bearing alloys is reviewed in terms of type, microstructure and properties. The methods including structure refinement, alloying element addition, surface modification and dual-scale structure controlling for improving the properties of Al-based sliding bearing alloys are described. It is proposed that the new Al-based sliding bearing alloy can be designed and prepared by referring to the new preparation process and microstructure design of high-performance alloys and combining the manufacture techniques of Al-based alloy bearing shell strip.
  • [1]
    轴瓦行业研究报告[EB/OL].(2011-10-13)[2017-04-28]. http://wenku.baidu.com/view/zdd1c1a2284ac850ad02421f.html.
    [2]
    易智强. 内燃机轴瓦涂层技术综述[J]. 内燃机配件, 2008(4):40-45.
    [3]
    张宝义. 内燃机滑动轴承合金[M]. 北京:机械工业出版社, 1989:54.
    [4]
    周卫铭, 郭忠诚, 龙晋明, 等. 电镀铅锡锑巴氏合金[J]. 机械工程材料, 2005, 29(1):27-29.
    [5]
    蒋玉琴. 国内外汽车滑动轴承合金发展现状及趋势[J]. 汽车工艺与材料, 2009(3):10-13.
    [6]
    李鹏. 国外内燃机滑动轴承合金无铅化及其应用[J]. 汽车工艺与材料, 2009(7):1-3.
    [7]
    鲁忠臣. Al-Sn轴承合金的双相双尺度结构与摩擦学性能[D].广州:华南理工大学, 2013.
    [8]
    李鹏. 国外公司新型系列无铅化铝基轴承合金材料的开发[J]. 汽车工艺与材料, 2013(9):12-19.
    [9]
    陈玉明, 揭晓华, 吴锋, 等. 铝基滑动轴承合金材料的研究进展[J]. 材料研究与应用, 2007, 1(2):95-98.
    [10]
    SILVA A P, SPINELLI J E, GARCIA A. Thermal parameters and microstructure during transient directional solidification of a monotectic Al-Bi alloy[J]. Journal of Alloys and Compounds, 2009, 475(1/2):347-351.
    [11]
    PHANIKUMAR G, DUTTA P, GALUN R, et al. Microstructural evolution during remelting of laser surface alloyed hyper-monotectic Al-Bi alloy[J]. Materials Science and Engineering:A, 2004, 371(1/2):91-102.
    [12]
    刘辛.互不溶Al-Sn合金的纳米相结构及其性能[D].广州:华南理工大学,2008.
    [13]
    张宝义. 浅谈内燃机曲轴轴承(轴瓦)合金层材料及其双金属[J]. 内燃机与配件, 2014(11):14-18.
    [14]
    蒋玉琴, 侯福建. 铝锡合金轴瓦在CA6102发动机上的应用[J]. 汽车工艺与材料, 1999(3):16-20.
    [15]
    张文毓. 轴瓦材料工业化生产技术综合分析[J]. 新材料产业, 2008(4):47-50.
    [16]
    马伟. 中锡铝合金轴瓦材料的开发应用[J]. 内燃机配件, 2004(2):17-19.
    [17]
    李永伟, 张少明. Al-Pb轴瓦合金的应用及研究进展[J]. 材料导报, 1999, 13(2):4-7.
    [18]
    倪红军. Al-Pb合金轴瓦材料的发展综述[J]. 特种铸造及有色合金, 1994(5):29-32.
    [19]
    孙大仁, 王连武, 刘勇兵, 等. 塑性变形对搅拌铸造铝-铅轴承合金组织和性能的影响[J]. 机械工程材料, 2003, 27(8):31-33.
    [20]
    徐永富, 朱敏. Al-Pb系耐磨合金的制造技术, 组织结构及力学性能[J]. 材料科学与工程, 1999, 17(2):71-75.
    [21]
    刘春慧, 程先华. 动载滑动轴承疲劳失效过程研究[J]. 机械工程材料, 2000, 24(3):1-4.
    [22]
    卢梅奎. 高速柴油机的硅铝合金轴承[J]. 车用发动机, 1982(5):47-50.
    [23]
    邹稳根. 国内外机车柴油机轴瓦发展与水平综述[J]. 铁道机车车辆工人, 2006(4):1-8.
    [24]
    汪蓓. 铝锌合金轴瓦材料微观组织与力学性能研究[D]. 武汉:武汉科技大学, 2011.
    [25]
    徐理明, 包锡弟. 铝锌合金轴瓦的研究[J]. 内燃机配件, 1992(2):7-11.
    [26]
    朱国乾. 含铋铝基轴承材料摩擦磨损性能研究[D]. 合肥:合肥工业大学, 2017.
    [27]
    LIU X, ZENG M Q, MA Y, et al. Promoting the high load-carrying capability of Al-20wt% Sn bearing alloys through creating nanocomposite structure by mechanical alloying[J]. Wear, 2012, 294:387-394.
    [28]
    尹树桐, 李庆芬, 郭亚军, 等.滑动轴承磁控溅射镀层技术的应用研究[J]. 中国表面工程, 2002, 15(2):39-41.
    [29]
    DE ROSA H, CARDUS G, BROITMAN E, et al. Structural properties of AlSn thin films deposited by magnetron sputtering[J]. Journal of Materials Science Letters, 2001, 20(14):1365-1367.
    [30]
    HARRIS S J, MCCARTNEY D G, HORLOCK A J, et al. Production of ultrafine microstructure in Al-Sn, Al-Sn-Cu and Al-Sn-Cu-Si alloys for use in tribological applications[J]. Materials Science Forum, 2000, 331:519-526.
    [31]
    KONG C J, BROWN P D, HARRIS S J, et al. The microstructures of a thermally sprayed and heat treated Al-20 wt.%Sn-3 wt.%Si alloy[J]. Materials Science and Engineering:A, 2005, 403(1/2):205-214.
    [32]
    NOSKOVA N I, VIL'DANOVA N F, FILIPPOV Y I, et al. Preparation, deformation, and failure of functional Al-Sn and Al-Sn-Pb nanocrystalline alloys[J]. The Physics of Metals and Metallography, 2006, 102(6):646-651.
    [33]
    LIU X, ZENG M Q, MA Y, et al. Wear behavior of Al-Sn alloys with different distribution of Sn dispersoids manipulated by mechanical alloying and sintering[J]. Wear, 2008, 265(11):1857-1863.
    [34]
    BHATTACHARYA V, CHATTOPADHYAY K. Microstructure and wear behaviour of aluminium alloys containing embedded nanoscaled lead dispersoids[J]. Acta Materialia, 2004, 52(8):2293-2304.
    [35]
    RAN G, ZHOU J E, XI S, et al. Microstructure and morphology of Al-Pb bearing alloy synthesized by mechanical alloying and hot extrusion[J]. Journal of Alloys and Compounds, 2006, 419(1):66-70.
    [36]
    朱敏, 曾美琴, 欧阳柳章, 等. 机械合金化制备的Al基轴承合金的结构与性能[J]. 华南理工大学学报(自然科学版), 2007, 35(10):37-43.
    [37]
    ZHU M, ZENG M Q, GAO Y, et al. Microstructure and wear properties of Al-Pb-Cu alloys prepared by mechanical alloying[J]. Wear, 2002, 253(8):832-838.
    [38]
    YUAN G C, ZHANG X M, LOU Y X, et al.Tribological characteristics of new series of Al-Sn-Si alloys[J]. Transactions of Nonferrous Metals Society of China, 2003, 13(4):774-780.
    [39]
    LUMLEY R N, SERCOMBE T B, SCHAFFER G M. Surface oxide and the role of magnesium during the sintering of aluminum[J]. Metallurgical and Materials Transactions A,1999, 30(2):457-463.
    [40]
    LU Z C, GAO Y, ZENG M Q, et al. Improving wear performance of dual-scale Al-Sn alloys:The role of Mg addition in enhancing Sn distribution and tribolayer stability[J]. Wear, 2014, 309(1):216-225.
    [41]
    LU Z C, ZENG M Q, GAO Y, et al. Improving wear performance of dual-scale Al-Sn alloys by adding nano-Si@Sn:Effects of Sn nanophase lubrication and nano-Si polishing[J]. Wear, 2015, 338:258-267.
    [42]
    张乐山. 发动机轴承合金材料的无铅化发展状况[J].柴油机, 2005(增刊1):328-331.
    [43]
    MIYAJIMA T, TANAKA Y, KATSUKI H, et al. Friction and wear properties of lead-free aluminum alloy bearing material with molybdenum disulfide layer by a reciprocating test[J]. Tribology International, 2013, 59:17-22.
    [44]
    AN J, SHEN X X, LU Y, et al. Microstructure and tribological properties of Al-Pb alloy modified by high current pulsed electron beam[J]. Wear, 2006,261(2):208-216.
    [45]
    LU K. The future of metals[J]. Science, 2010, 328(5976):319-320.
    [46]
    NEWBERY A P, NUTT S R, LAVERNIA E J. Multi-scale Al 5083 for military vehicles with improved performance[J]. JOM, 2006, 58(4):56-61.
    [47]
    LU Z C, ZENG M Q, GAO Y, et al. Significant improvement of wear properties by creating micro/nano dual-scale structure in Al-Sn alloys[J]. Wear, 2012, 296(1):469-478.
    [48]
    LU Z C, ZENG M Q, GAO Y, et al. Minimizing tribolayer damage by strength-ductility matching in dual-scale structured Al-Sn alloys:A mechanism for improving wear performance[J]. Wear, 2013, 304(1):162-172.
    [49]
    SONG K Q, LU Z C, ZHU M, et al. A remarkable enhancement of mechanical and wear properties by creating a dual-scale structure in Al-Sn-Si alloy[J]. Surface and Coatings Technology, 2017,325:682-688.

Catalog

    Article views (2) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return