Citation: | GUO Li, ZHAN Hao, YOU Yuping, YUE Wei. Research Progress on Powder Injection Molding of Titanium and Titanium Alloy[J]. Materials and Mechanical Engineering, 2018, 42(6): 15-21,86. DOI: 10.11973/jxgccl201806003 |
[1] |
肖永清.诠释现代车用钛合金的应用及前景[J]. 铝加工, 2008, 5(1):41-44.
|
[2] |
CUI C X, HU B M, ZHAO L C, et al. Titanium alloy production technology, market prospects and industry development[J]. Materials and Design, 2011, 32(3):1684-1691.
|
[3] |
FROES F H. Advances in titanium metal injection molding[J]. Powder Metallurgy and Metal Ceramics, 2007, 46(5/6):303-310.
|
[4] |
EBEL T. Advances in the metal injection moulding of titanium at Euro PM2014[J]. PIM International, 2015, 9(1):51-61.
|
[5] |
VIRDHIAN S, OSADA T, KANG H, et al. Evaluation and analysis of distortion of complex shaped Ti-6Al-4V compacts by metal injection molding process[J]. Key Engineering Materials, 2012, 520:187-194.
|
[6] |
HEANEY D. Handbook of metal injection molding[C]. Cambridge:Woodhead Publishing Limited, 2012, 46(4):203-210.
|
[7] |
曹家勇. 粉末冶金产业化的重要技术方向[J]. 新材料产业, 2004(11):29-34.
|
[8] |
FROES F H. Powder injection molding (PIM) of titanium alloys:Ripe for expansion[J]. Materials Technology, 2000, 15(4):295-299.
|
[9] |
FROES F H, GERMAN R M. Cost reductions prime Ti PIM for growth[J]. Metal Powder Report, 2000, 6(55):12-16.
|
[10] |
GUO S B, QU X H, HE X B, et al. Mechanical properties and microstructure of Ti-6Al-4V compacts by metal injection molding[J]. Transactions of Nonferrous Metals Society of China, 2004, 14(6):1054-1060.
|
[11] |
HEIDLOFF A J, RIEKEN J R, ANDERSON I E, et al. Advanced gas atomization processing for Ti and Ti alloy powder manufacturing[J]. JOM, 2010, 62(5):35-41.
|
[12] |
GERMAN R M. Progress in titanium metal powder injection molding[J]. Materials, 2013, 6(8):3641-3662.
|
[13] |
EBEL T. Metal injection molding (MIM) of titanium and titanium alloys[M]//Handbook of Metal Injection Molding. Cambridge:Woodhead Publishing Limited, 2012:415-445.
|
[14] |
KATO K. Effect of sintering temperature on density and tensile properties of titanium compacts by metal injection molding[J]. Journal of the Japan Society of Powder and Power Metallurgy, 2009, 46(8):865-869.
|
[15] |
刘超, 孔祥吉, 吴胜文,等. 钛及钛合金金属粉末注射成形技术的研究进展[J]. 粉末冶金技术, 2017, 35(2):150-158.
|
[16] |
CARRENO-MORELLI E, KRSTEVI W, ROMEIRA B, et al. Titanium parts by powder injection moulding of TiH2-based feedstocks[J]. PIM International, 2010, 4(3):60-63.
|
[17] |
CARRENO-MORELLI E, BIDAUX J E, RODRÍGUEZ-ARBAIZAR M, et al. Production of titanium grade 4 components by powder injection moulding of titanium hydride[J]. Powder Metallurgy, 2014, 57(2):89-92.
|
[18] |
CARRENO-MORELLI E, RODRÍGUEZ-ARBAIZAR M, AMHERD A, et al. Porous titanium processed by powder injection moulding of titanium hydride and space holders[J]. Powder Metallurgy, 2014, 57(2):93-97.
|
[19] |
喻岚. 注射成形钛合金的研究[D]. 长沙:中南大学,2004.
|
[20] |
PARK S J, WU Y, HEANEY D F, et al. Rheological and thermal debinding behaviors in titanium powder injection molding[J]. Metallurgical and Materials Transactions A, 2009, 40(1):215-222.
|
[21] |
BEAUCHAMP B, RAYMOR A P C. Leading the way with plasma atomised Ti spherical powders for MIM[J]. PIM International, 2011, 5(4):55-57.
|
[22] |
郭世柏, 曲选辉, 段柏华,等. 注射成形Ti-6Al-4V合金的显微组织和力学性能[J]. 北京科技大学学报, 2005, 27(3):307-311.
|
[23] |
WEN G, CAO P, GABBITAS B, et al. Development and design of binder systems for titanium metal injection molding:An overview[J]. Metallurgical and Materials Transactions A, 2013, 44(3):1530-1547.
|
[24] |
GUO S B, DUAN B H, HE X B, et al. Powder injection molding of pure titanium[J]. Rare Metals, 2009, 28(3):261-265.
|
[25] |
FRIEDERICI V, BRUININK A, IMGRUND P, et al. Getting the powder mix right for design of bone implants[J]. Metal Powder Report, 2010, 65(7):14-16.
|
[26] |
KRUG S, EVANS J R G, TER MAAT J H H. Transient effects during catalytic binder removal in ceramic injection moulding[J]. Journal of the European Ceramic Society, 2001, 21(12):2275-2283.
|
[27] |
SIDMBE A T, FIGUEROA I A, HAMILTON H, et al. Metal injection moulding of Ti-64 components using a water soluble binder[J]. PIM International, 2010, 4(4):56-62.
|
[28] |
SUZUKI K, FUKUSHIMA T. Binder for injection molding of metal powder or ceramic powder and composition and molding method wherein the same is used:US6171360 B1[P]. 2001-01-09.
|
[29] |
王家惠, 席健, 史庆南. 注射成形钛合金喂料装载量及流变特性研究[J]. 稀有金属材料与工程, 2012, 41(增刊2):827-831.
|
[30] |
郭世柏, 曲选辉, 段柏华,等. 钛合金粉末注射成形工艺参数的优化[J]. 材料工程, 2004(11):32-36.
|
[31] |
SUPATI R, LOH N H, KHOR K A, et al. Mixing and characterization of feedstock for powder injection molding[J]. Materials Letters, 2000, 46(2/3):109-114.
|
[32] |
王家惠. 机械合金化制备纳米晶Ti-6Al-4V及其注射成形工艺研究[D]. 昆明:昆明理工大学, 2014.
|
[33] |
黄坤祥.金属粉末注射成形[M].台湾:粉末冶金协会,2013.
|
[34] |
CHEN G, CAO P, WEN G, et al. Debinding behaviour of a water soluble PEG/PMMA binder for Ti metal injection moulding[J]. Materials Chemistry and Physics, 2013, 139(2/3):557-565.
|
[35] |
GERLING R, AUST E, LIMBERG W, et al. Metal injection moulding of gamma titanium aluminide alloy powder[J]. Materials Science and Engineering:A,2006,423(1/2):262-268.
|
[36] |
THOMAS Y, BARIL E. Supercritical CO2 debinding:Benefits to titanium powder injection moulding?[C]//World PM2010.[S.l.]:European Powder Metallurgy Association, 2010.
|
[37] |
刘超, 孔祥吉, 况春江. 生物医用二级纯钛注射成形研究[J]. 粉末冶金技术, 2016, 34(4):281-284.
|
[38] |
OBASI G C, FERRI O M, EBEL T, et al. Influence of processing parameters on mechanical properties of Ti-6Al-4V alloy fabricated by MIM[J]. Materials Science and Engineering:A, 2010, 527(16/17):3929-3935.
|
[39] |
NOR N H M, MUHAMAD N, AHMAD S, et al. Sintering parameter optimization of Ti-6Al-4V metal injection molding for highest strength using palm stearin binder[J]. Procedia Engineering, 2013,68:359-364.
|
[40] |
SIDAMBE A T, FIGUCROA I A, HAMILTON H, et al. Sintering study of CP-Ti and Ti-6Al-4V metal injection moulding parts using Taguchi method[C]//Euro PM2009.[S.l.]:European Powder Metallurgy Association, 2009.
|
[41] |
ISMAIL M H, GOODALL R, DAVIES H A, et al. Porous NiTi alloy by metal injection moulding/sintering of elemental powders:Effect of sintering temperature[J]. Materials Letters, 2012, 70:142-145.
|
[42] |
LIMBERG W, EBEL T, PYCZAK F, et al. Influence of the sintering atmosphere on the tensile properties of MIM-processed Ti45Al5Nb0.2B0.2C[J]. Materials Science and Engineering:A, 2012, 552:323-329.
|
[43] |
CARMAN A, ZHANG L C, IVASISHIN O M, et al. Role of alloying elements in microstructure evolution and alloying elements behaviour during sintering of a near-β titanium alloy[J]. Materials Science and Engineering:A, 2011, 528(3):1686-1693.
|
[44] |
WEI W, LIU Y, ZHOU K, et al. Effect of Fe addition on sintering behaviour of titanium powder[J]. Powder Metallurgy, 2003, 46(3):246-250.
|
[45] |
GULSOY H O, GUNAY V, BAYKARA T, et al. Injection molding of mechanical alloyed Ti-Fe-Zr powder[J]. Materials Transactions, 2012, 53(6):1100-1105.
|
[46] |
LUO S D, YANG Y F, SCHAFFER G B, et al. The effect of a small addition of boron on the sintering densification, microstructure and mechanical properties of powder metallurgy Ti-7Ni alloy[J]. Journal of Alloys and Compounds, 2013, 555:339-346.
|
[47] |
FERRI O M, EBEL T, BORMANN R. The influence of a small boron addition on the microstructure and mechanical properties of Ti-6Al-4V fabricated by metal injection moulding[J]. Advanced Engineering Materials, 2011, 13(5):436-447.
|
[48] |
FERRI O M, EBEL T, BORMANN R. Influence of surface quality and porosity on fatigue behaviour of Ti-6Al-4V components processed by MIM[J]. Materials Science and Engineering:A, 2010, 527(7/8):1800-1805.
|
[49] |
BENSON J M, CHIKWANDA H K. The challenges of titanium metal injection moulding[J]. Journal for New Generation Sciences, 2009, 7(3):1-14.
|
[50] |
EWART P, JULL H, KVNNEMEYER R, et al. Identification of contamination levels and the microstructure of metal injection moulded titanium[J].Key Engineering Materials, 2016, 704:161-169.
|
[51] |
UEMATSU T, ITOH Y, SATO K, et al. Effects of substrate for sintering on the mechanical properties of injection molded Ti-6Al-4V alloy[J]. Journal of the Japan Society of Powder and Powder Metallurgy, 2006, 53(9):755-759.
|
[52] |
ZHAO D, EBEL T, YAN M, et al. Trace carbon in biomedical beta-titanium alloys:Recent progress[J]. JOM, 2015, 67(10):2236-2243.
|
[53] |
SOYAMA J, OEHRING M, EBEL T, et al. Sintering behavior and microstructure formation of titanium aluminide alloys processed by metal injection molding[J]. JOM, 2017,69(4):676-682.
|
[54] |
XU W, BRANDT M, SUN S, et al. Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition[J]. Acta Materialia, 2015, 85:74-84.
|
[55] |
SIDAMBE A T, FIGUEROA I A, HAMILTON H G C, et al. Metal injection moulding of CP-Ti components for biomedical applications[J]. Journal of Materials Processing Technology, 2012, 212(7):1591-1597.
|
[56] |
GU Y W, YONG M S, TAY B Y, et al. Synthesis and bioactivity of porous Ti alloy prepared by foaming with TiH2[J]. Materials Science and Engineering:C, 2009, 29(5):1515-1520.
|
[57] |
TUNCER N, BRAM M, LAPTEV A, et al. Study of metal injection molding of highly porous titanium by physical modeling and direct experiments[J]. Journal of Materials Processing Technology, 2014, 214(7):1352-1360.
|
[58] |
CHEN L J, LI T, LI Y M, et al. Porous titanium implants fabricated by metal injection molding[J]. Transactions of Nonferrous Metals Society of China,2009,19(5):1174-1179.
|
[59] |
THIAN E S, LOH N H, KHOR K A, et al. Effects of debinding parameters on powder injection molded Ti-6Al-4V/HA composite parts[J]. Advanced Powder Technology, 2001, 12(3):361-370.
|
[60] |
AUST E, LIMBERG W, GERLING R, et al. Advanced TiAl6Nb7 bone screw implant fabricated by metal injection moulding[J]. Advanced Engineering Materials, 2006, 8(5):365-370.
|
[61] |
AROCKIASAMY A, GERMAN R M, HEANEY D F, et al. Effect of additives on sintering response of titanium by powder injection moulding[J]. Powder Metallurgy, 2011, 54(3):420-426.
|
[62] |
杨伟,张崇才,涂铭旌. 钛及钛合金粉末注射成型研究近况及应用前景[J]. 材料导报, 2015, 29(5):123-128.
|