• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
LIAO Cong, GONG Manfeng, LI Mingsheng, LI Man. Effect of TiCN Addition on Properties of WC-Co Cemented Carbide[J]. Materials and Mechanical Engineering, 2018, 42(6): 78-82. DOI: 10.11973/jxgccl201806016
Citation: LIAO Cong, GONG Manfeng, LI Mingsheng, LI Man. Effect of TiCN Addition on Properties of WC-Co Cemented Carbide[J]. Materials and Mechanical Engineering, 2018, 42(6): 78-82. DOI: 10.11973/jxgccl201806016

Effect of TiCN Addition on Properties of WC-Co Cemented Carbide

More Information
  • Received Date: April 24, 2017
  • Revised Date: May 09, 2018
  • WC-Co cemented carbides were prepared by powder metallurgy and high temperature liquid sintering with TiCN content of 0,0.5wt%,1.0wt%,1.5wt%,2.0wt%, respectively. The effects of TiCN content on the micromorphology, densification performance and mechanical properties of the cemented carbide were studied. The results show that when TiCN content was no more than 1.0wt%, the grain size of the cemented carbide distributed evenly and less defects such as holes, microcracks and impurity segregation were observed; when higher than 1.0wt%, the amount of defects increased and the size bacame larger. With the increase of TiCN content, the densification performance of the cemented carbide decreased; the Vickers hardness increased and then decreased; the bending strength and fracture toughness first decreased then increased slightly and then decreased. When the TiCN content was 1.0wt%, the comprehensive performance of the cemented carbide was the best.
  • [1]
    姜勇. WC-Co类硬质合金的疲劳性能及应力分析方法的研究[D].长沙:湖南大学,2011.
    [2]
    郭圣达,羊建高,陈颢.粗晶粒WC-Co类硬质合金研究现状[J].粉末冶金工业,2011,21(4):58-63.
    [3]
    MORTON C W, WILLS D J, STJERNBERG K. The temperature ranges for maximum effectiveness of grain growth inhibitors in WC-Co alloys[J]. International Journal of Refractory Metals and Hard Materials, 2005, 23(4/5/6):287-293.
    [4]
    SHEN T T, XIAO D H, OU X Q, et al. Effects of LaB6 addition on the microstructure and mechanical properties of ultrafine grained WC-10Co alloys[J]. Journal of Alloys and Compounds, 2011, 509(4):1236-1243.
    [5]
    ZHENG D, LI X, AI X, et al. Bulk WC-Al2O3 composites prepared by spark plasma sintering[J]. International Journal of Refractory Metals and Hard Materials, 2012, 30(1):51-56.
    [6]
    MALEK O, LAUWERS B, PEREZ Y, et al. Processing of ultrafine ZrO2 toughened WC composites[J]. Journal of the European Ceramic Society, 2009, 29(16):3371-3378.
    [7]
    BASU B, LEE J H, KIM D Y. Development of WC-ZrO2 nanocomposites by spark plasma sintering[J]. Journal of the American Ceramic Society, 2004, 87(2):317-319.
    [8]
    POETSCHKE J, RICHTER V, HOLKE R. Influence and effectivity of VC and Cr3C2 grain growth inhibitors on sintering of binderless tungsten carbide[J]. International Journal of Refractory Metals and Hard Materials, 2012, 31:218-223.
    [9]
    VAN DER MERWE R, SACKS N. Effect of TaC and TiC on the friction and dry sliding wear of WC-6wt.% Co cemented carbides against steel counterfaces[J]. International Journal of Refractory Metals and Hard Materials, 2013, 41:94-102.
    [10]
    ZHOU W, XIONG J, WAN W, et al. The effect of NbC on mechanical properties and fracture behavior of WC-10Co cemented carbides[J]. International Journal of Refractory Metals and Hard Materials, 2015, 50:72-78.
    [11]
    POETSCHKE J, RICHTER V, HOLKE R. Influence and effectivity of VC and Cr3C2 grain growth inhibitors on sintering of binderless tungsten carbide[J]. International Journal of Refractory Metals and Hard Materials, 2012, 31:218-223.
    [12]
    SUN L, JIA C C, CAO R, et al. Effects of Cr3C2 additions on the densification, grain growth and properties of ultrafine WC-11Co composites by spark plasma sintering[J]. International Journal of Refractory Metals and Hard Materials, 2008, 26(4):357-361.
    [13]
    SUN L, JIA C C, LIN C G, et al. VC addition prepared ultrafine WC-11Co composites by spark plasma sintering[J]. Journal of Iron and Steel Research, International, 2007, 14(5):85-89.
    [14]
    LUYCKX S, ALLI M Z. Comparison between V8C7 and Cr3C2 as grain refiners for WC-Co[J]. Materials & Design, 2001, 22(6):507-510.
    [15]
    MAHMOODAN M, ALIAKBARZADEH H, GHOLAMIPOUR R. Sintering of WC-10%Co nano powders containing TaC and VC grain growth inhibitors[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(5):1080-1084.
    [16]
    张卫兵,刘向中,陈振华,等.WC-Co硬质合金最新进展[J].稀有金属,2015,39(2):178-186.
    [17]
    庞思勤,于启勋.TiCN基硬质合金刀具切削性能与切削机理研究[J].硬质合金,1995(1):37-43.
    [18]
    BUTLER B G, LU J, FANG Z Z, et al. Production of nanometric tungsten carbide powders by planetary milling[J]. International Journal of Powder Metallurgy, 2007, 43(1):35-43.
    [19]
    FANG Z Z, WANG X, RYU T, et al. Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide:A review[J]. International Journal of Refractory Metals and Hard Materials, 2009, 27(2):288-299.
    [20]
    WESTERLUND J, VIMERCATI A. Four decades of HIP progress[J]. Metal Powder Report, 2000, 55(2):14-21.
    [21]
    MORIGUCHI H, TSUDUKI K, IKEGAYA A. Ultrafine grained cemented cargides sintered by pulse current process[J]. Powder Metallurgy, 2000, 43(1):17-19.
    [22]
    CHICARDI E, TORRES Y, CÓRDOBA J M, et al. Effect of sintering time on the microstructure and mechanical properties of (Ti,Ta)(C,N)-based cermets[J]. International Journal of Refractory Metals and Hard Materials, 2013, 38:73-80.
    [23]
    PORAT R, BERGER S, ROSEN A. Dilatometric study of the sintering mechanism of nanocrystalline cemented carbides[J]. Nanostructured Materials, 1996, 7(4):429-436.
    [24]
    QIAN M A, LIM L C. On the disappearance of Mo2C during low-temperature sintering of Ti(C,N)-Mo2C-Ni cermets[J]. Journal of Materials Science, 1999, 34(15):3677-3684.
    [25]
    HAN J C, ZHANG X H, WOOD J V. In-situ combustion synthesis and densification of TiC-xNi cermets[J]. Materials Science and Engineering:A, 2000, 280(2):328-333.
    [26]
    LARGILLER G, DONG L, BOUVARD D, et al. Constitutive modeling of the behaviour of cermet compacts during reaction sintering[J]. Powder Technology, 2011, 208(2):496-502.
    [27]
    羊建高, 谭敦强, 陈景. 硬质合金[M]. 长沙:中南大学出版社, 2012:363-364.
    [28]
    贺从训,夏志华,汪有明,等. Ti(C,N)基金属陶瓷的研究[J]. 稀有金属, 1999(1):4-12.
    [29]
    周伟,郑勇,周斌,等.氮含量对Ti(C,N)基金属陶瓷显微组织与磨粒磨损行为的影响[J].硬质合金,2012, 29(4):197-202.
    [30]
    李晨辉,余立新,熊惟皓. WC的粒度对WC-Co硬质合金断裂韧性的影响[J].硬质合金,2001,18(3):138-141.
    [31]
    陈健,弓满锋,伍尚华,等.掺杂对硬质合金微观结构和晶粒生长的影响[J].材料导报,2014,28(19):25-30.
    [32]
    曹顺华,李炯义,林信平,等.纳米晶WC-10Co硬质合金复合粉末的烧结行为及性能[J].稀有金属材料与工程,2005,34(11):1703-1707.

Catalog

    Article views (8) PDF downloads (1) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return