• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
HUANG Zidong, LIN Junming, JIANG Yikui, YE Lifang, WEI Minsheng, XIE Chunyu, ZHENG Ruisheng. Electrochemical Corrosion Resistance of 304 Stainless Steel after Sensitization[J]. Materials and Mechanical Engineering, 2018, 42(9): 55-60,64. DOI: 10.11973/jxgccl201809012
Citation: HUANG Zidong, LIN Junming, JIANG Yikui, YE Lifang, WEI Minsheng, XIE Chunyu, ZHENG Ruisheng. Electrochemical Corrosion Resistance of 304 Stainless Steel after Sensitization[J]. Materials and Mechanical Engineering, 2018, 42(9): 55-60,64. DOI: 10.11973/jxgccl201809012

Electrochemical Corrosion Resistance of 304 Stainless Steel after Sensitization

More Information
  • Received Date: June 15, 2017
  • Revised Date: July 22, 2018
  • The sensitization degree of 304 stainless steel after heating at 600 ℃ for different times was evaluated by electrochemical potentiodynamic reactivation. The electrochemical corrosion behavior of tested steel with different sensitization degrees in 4vol% acetic acid solution, 5wt% NaCl solution and the two solution mixture with volume ratio of 1∶1, respectively, and the influence of immersion time and solution temperature on the electrochemical corrosion resistance of tested steel with the same degree of sensitization were studied. The results show that with the increase of holding time, the reactivation current of tested steel increased, and the sensitization degree increased. With the increase of sensitization degree, the self-corrosion potential of tested steel in NaCl solution and NaCl/acetic acid mixed solution shifted negatively, and the corrosion resistance decreased; the self-corrosion potential in acetic acid solution shifted positively, and the corrosion resistance was improved. With the extension of immersion time, the self-corrosion potential of tested steel in NaCl solution shifted negatively, and the corrosion resistance decreased; the self-corrosion potential in acetic acid solution shifted positively, and the corrosion resistance was improved; the self-corrosion potential in NaCl/acetic acid mixed solution changed little, and the corrosion resistance was basically unchanged. With the increase of solution temperature, the self-corrosion current densities of tested steel in different solutions all increased.
  • [1]
    张根元,吴晴飞,覃瑞森,等. 贫铬区演化对奥氏体不锈钢晶间腐蚀影响[J].材料热处理学报,2013,34(增刊2):148-153.
    [2]
    梁成浩,高扬.敏化对不锈钢孔蚀性能的影响[J].腐蚀科学与防护技术,1996,8(4):25-29.
    [3]
    张德康.不锈钢局部腐蚀[M].北京:科学出版社,1982:55-108.
    [4]
    孙秋霞.材料腐蚀与防护[M].北京:冶金工业出版社,2009:68-71.
    [5]
    魏宝明.金属腐蚀理论及应用[M].北京:化工工业出版社,1984:156-158.
    [6]
    姜爱华,陈亮,丁毅,等. 304不锈钢晶间敏化行为[J]. 腐蚀与防护,2013,34(5):423-425.
    [7]
    丰玉玺,陈丽芳,陈安源,等. 敏化处理对304不锈钢板晶间腐蚀的影响[J]. 热处理技术与裝备,2017,38(1):15-17.
    [8]
    金维松,朗宇平,荣凡. EPR法评价奥氏体不锈钢晶间腐蚀敏感性的研究[J].中国腐蚀与防护学报, 2007,27(1):54-59.
    [9]
    LOPEZ N, CID M, PUIGGALI M, et al. Application of double loop electrochemical potentiodynamic reactivation test to austenitic and duplex stainless steels[J]. Materials Science & Engineering:A, 1997, 229(1):123-128.
    [10]
    AMADOU T, BRAHAM C, SIDHOM H. Double loop electrochemical potentiokinetic reactivation test optimization in checking of duplex stainless steel intergranular corrosion susceptibility[J]. Metallurgical & Materials Transactions A, 2004, 35(11):3499-3513.
    [11]
    TAN H, JIANG Y M, DENG B, et al. Evaluation of aged Incoloy 800 alloy sensitization to intergranular corrosion by means of double loop electrochemical methods and image analysis[J]. Nuclear Engineering & Design, 2011,241(5):1421-1429.
    [12]
    HONG J F, HAN D, TAN H, et al. Evaluation of aged duplex stainless steel UNS S32750 susceptibility to intergranular corrosion by optimized double loop electrochemical potentiokinetic reactivation method[J]. Corrosion Science, 2013, 68(1):249-255.
    [13]
    叶超,杜楠, 田文明. pH值对304不锈钢在3.5%NaCl溶液中点蚀过程的影响[J].中国腐蚀与防护学报, 2015,35(1):38-42.
    [14]
    杜楠,田文明. 304不锈钢在3.5%NaCl溶液中的点蚀动力学及机理[J].金属学报, 2012,48(7):299-304.
    [15]
    程学群,李晓刚,杜翠薇. 316不锈钢在含Cl-高温醋酸溶液中的电化学行为[J].金属学报, 2006,42(3):299-304.
    [16]
    方智,吴荫顺,朱日彰. 敏化态304不锈钢在室温下发生应力腐蚀的Cl-浓度界限[J].腐蚀科学与防护技术, 1994,6(4):305-310.
    [17]
    王再田. 钢中碳化物的E0EaE-I曲线研究方法的探讨[J]. 兵器材料科学与工程, 1983(2):61-66.
    [18]
    叶陈清, 胡融刚,侯瑞青,等. 敏化处理304不锈钢局部腐蚀行为的扫描微电极法研究[J]. 电化学, 2013,19(6):507-510.
    [19]
    RASHID M W A, GAKIM M, ROSLI Z M, et al. Formation of Cr23C6 during the sensitization of AISI 304 stainless steel and its effect to pitting corrosion[J]. International Journal of Electrochemical Science, 2012, 7(10):9466-9477.
    [20]
    鞠云,朱维东,王鹏程. 304不锈钢在稀盐酸中的电化学腐蚀行为[J].热加工工艺, 2014,43(6):53-55.
    [21]
    陈惠波,江乙逵,魏敏生,等. 不锈钢餐、厨具中铬离子迁移量的影响因素及质量控制[J].现代食品科技, 2010,26(12):1309-1313.
    [22]
    李春杰. 盐酸腐蚀低碳钢的动力学研究[J].大庆石油学院学报, 1999,23(3):28-30.

Catalog

    Article views (20) PDF downloads (3) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return