Citation: | ZHANG Xin, CAI Wenhe, DU Shuangming, ZHANG Kun. Research Situation and Application Prospect of Sanicro 25 Heat-Resistant Steel[J]. Materials and Mechanical Engineering, 2019, 43(1): 1-7. DOI: 10.11973/jxgccl201901001 |
[1] |
毛健雄,毛健全.当前我国燃煤火电机组降低CO2排放的途径[J].电力建设,2011,32(11):5-10.
|
[2] |
何振东,华洪渊,张志伦,等. 1000 MW超超临界锅炉设计探讨[J].东方电力评论,2005,19(2):59-62.
|
[3] |
陈仁杰.上海外高桥第三发电厂工程设计特点[J].电力勘测设计,2010,77(3):34-38.
|
[4] |
孙锐,赵敏,秦丰,等.推广应用600 MW超超临界机组的必要性和可行性研究[J]. 中国电力, 2005, 38(8):37-40.
|
[5] |
超超临界发电技术进入攻坚期:630~650℃机组成下步火电建设重要目标[EB/OL].(2016-12-12)[2017-09-16]. http://news.bjx.com.cn/html/20161212/795875.shtml.
|
[6] |
张新,张志刚,王晓茹,等. 电站锅炉用耐热钢管焊接接头再热裂纹研究进展[J]. 机械工程材料,2017,41(2):8-14.
|
[7] |
周荣灿.超超临界火电厂材料技术研究综述[C]//中国科协2004年学术年会论文集.博鳌:中国科协2004年学术年会大会执委会,2004:19-25.
|
[8] |
毛健雄. 700℃超超临界机组高温材料研发的最新进展[J].电力建设,2013,34(8):69-76.
|
[9] |
朱传志,袁勇,尹宏飞,等. 超超临界机组用Sanicro 25耐热钢研究进展[J]. 材料导报,2017,31(7):78-84.
|
[10] |
RUTKOWSKI B, GIL A, CZYRSKA-FILEMONOWICZ A. Microstructure and chemical composition of the oxide scale formed on the Sanicro 25 steel tubes after fireside corrosion[J]. Corrosion Science, 2016, 102:373-383.
|
[11] |
VISWANATHAN R, HENRY J F, TANZOSH J, et al. Program on materials technology for ultra-supercritical coal power plants[J]. Journal of Materials Engineering and Performance, 2013, 22:2904-2915.
|
[12] |
ZHOU R, ZHU L, LIU Y, et al. Precipitates and precipitation strengthening of Sanicro 25 welded joint base metal crept at 973 K[J]. Steel Research International, 2017,88(8):1600414.
|
[13] |
赵博. W含量对Sanicro 25钢组织和性能的影响[D]. 昆明:昆明理工大学,2013.
|
[14] |
RAUTIO R, BRUCE S. Alloy for ultra-supercritical coal fired boiler[R]. Sweden:Sandvik Group, 2008.
|
[15] |
毕艳艳. Sanicro 25新型超超临界燃煤电厂锅炉用高强度奥氏体耐热钢[C]//第五届火力发电厂金属材料与焊接技术交流2016年会论文集. 杭州:中国电力科技网,2016.
|
[16] |
刁旺战,王萍,欧海燕,等. 先进超超临界锅炉用钢Sanicro 25焊接接头性能的试验研究[J]. 锅炉制造,2017(1):51-53.
|
[17] |
乔加飞,王斌,陈寅彪,等. 630℃高效超超临界二次再热机组关键技术研究[J]. 煤炭工程,2017(增刊1):109-113.
|
[18] |
张显. 超超临界锅炉用奥氏体耐热钢Sanicro 25的性能[J]. 发电设备,2015,29(6):439-442.
|
[19] |
迟成宇,于鸿垚,董建新,等. 富铜纳米析出相在18Cr9Ni3CuNbN奥氏体耐热钢中的时效强化[J]. 材料热处理学报,2011,32(4):58-63.
|
[20] |
王崇斌,诸育枫,王煜,等. 700℃超超临界机组锅炉过热器选材分析[J].发电设备,2016,30(3):168-172.
|
[21] |
HECZKOA M, POLÁKA J, KRUML T. Microstructure and dislocation arrangements in Sanicro 25 steel fatigued at ambient and elevated temperatures[J]. Materials Science and Engineering:A, 2017, 680:168-181.
|
[22] |
孙珍宝,朱谱藩. 合金钢手册(上册)[M]. 北京:冶金工业出版社, 1984:9.
|
[23] |
SAWARAGI Y. Development of the economical 18-8 stainless steel having high elevated temperature strength for fossil fired boilers[J]. Sumitomo Search, 1992, 1:48.
|
[24] |
SAWARAGI Y, OTSUKA N. Properties of a new 18-8 austenitic steel tube (Super304H) for fossil fired boilers after service exposure with high elevated temperature strength[J]. Sumitomo Search, 1994, 10:56.
|
[25] |
RUTKOWSKI B, GILA A, AGÜERO A, et al. Microstructure, chemical-and phase composition of Sanicro 25 austenitic steel after oxidation in steam at 700℃[J]. Oxidation of Metals, 2018, 89(1/2):183-195.
|
[26] |
SHIM J H, KOZESCHNIK E, JUNG W S, et al. Numerical simulation of long-term precipitate evolution in austenitic heat-resistant steels[J]. Calphad, 2010, 34:105-112.
|
[27] |
赵庆权. 国产化Super304H钢管组织性能及持久强度研究[D]. 兰州:兰州理工大学,2008.
|
[28] |
BI Y Y. Sanicro 25(Tube and pipe, seamless), material data sheet of Sandvik[R]. Sweden:Sandvik Group, 2011.
|
[29] |
INTISO L, JOHANSSON L G, SVENSSON J E, et al. Oxidation of Sanicro 25(42Fe22Cr25NiWCuNbN) in O2 and O2+H2O environments at 600-750℃[J]. Oxidation of Metals, 2015, 83(3/4):367-391.
|
[30] |
NARUMANCHI K. Sandvik Sanicro 25-New heat resistant steel for A-USC[R]. Sweden:Sandvik Group, 2012.
|
[31] |
程世长,刘正东,包汉生. 700℃超超临界火电机组锅炉合金进展[C]//第九届电站金属材料学术年会论文集. 成都:中国电机工程学会火力发电分会, 2011:273-277.
|
[32] |
ZHOU R, ZHU L, LIU Y, et al. Microstructural evolution and the effect on hardness of Sanicro 25 welded joint base metal after creep at 973 K[J]. Journal of Materials Science, 2017, 52(11):6161-6172.
|
[33] |
赖仙红,杨红英. Sanicro 25奥氏体耐热钢管性能简述[J]. 东方锅炉,2012(4):28-33.
|
[34] |
陈亮,卢征然. 700℃超超临界锅炉高温过热器再热器用Sanicro 25新材料焊接工艺研究[J]. 锅炉技术,2015,46(5):49-53.
|
[35] |
JAMROZIK P, SOZA AŃSKA M. High-temperature corrosion resistance of welded joints in Sanicro 25 steel[J]. Solid State Phenomena, 2015, 227:401-404.
|
[36] |
王永发. Sanicro25高温时效及与T92焊接接头组织性能研究[D]. 天津:天津大学,2016.
|
[37] |
王斌,梁军,荆洪阳,等. 焊接材料对Sanicro 25/T92异种钢接头组织及力学性能的影响[J].焊接技术,2016,45(6):27-30.
|
[38] |
POLÁK J, PETRÁ AŠG R, HECZKO M, et al. Evolution of the cyclic plastic response of Sanicro 25 steel cycled at ambient and elevated temperatures[J]. International Journal of Fatigue, 2016, 83:75-83.
|
[39] |
ZUREK J, YANG S M, LIN D Y, et al. Microstructural stability and oxidation behavior of Sanicro 25 during long-term steam exposure in the temperature range 600-750℃[J]. Materials and Corrosion, 2015, 66(4):315-327.
|
[40] |
迟成宇,于鸿篧,谢锡善. 世界700℃等级先进超超临界电站关键高温材料[J]. 世界钢铁,2013,13(2):42-59.
|
[41] |
王崇斌,徐雪元,诸育枫,等. 蒸汽温度700℃超超临界锅炉受热面选材研究[J]. 压力容器,2015,32(4):51-59.
|
[42] |
SUN R, CUI Z Z, TAO Y. Progress of China 700℃ USC development program[C]//The 7th International Conference on Advances in Materials Technology for Fossil Power Plants. Hawaii, USA:Electric Power Research Institute, 2013.
|