Citation: | LUO Zhaoyi, WANG Xisheng, ZHANG Guikai, HUANG Guangqi, YANG Feilong, XIANG Xin, HU Meijuan, TANG Tao. Electrochemical Hydrogen Diffusion Behavior of B2 Phase FeAl Alloy[J]. Materials and Mechanical Engineering, 2019, 43(1): 13-18. DOI: 10.11973/jxgccl201901003 |
[1] |
SIKKA V K, VISWANATHAN S, MCKAMEY C G. Structural intermetallics[M]. Warrendale:The Materials Society, 1993:483-491.
|
[2] |
TANG T, LIU Y, LI Q, et al. DC magnetron sputtering of B2 phase FeAl(111) single-crystal-like films and hydrogen damage behavior[J]. Advanced Materials Research, 2013, 853:131-134.
|
[3] |
HUAPE-PADILLA E, SANCHEZ-CARRILLO M, FLORES D L. Corrosion study of FeAl intermetallic alloys in simulated acid rain[J]. International Journal of Electrochemical Science, 2014, 3(10):2141-2154.
|
[4] |
HOUNGNIOU C, CHEVALIER S, LARPIN J P. High-temperature-oxidation behavior of iron-aluminide diffusion coatings[J]. Oxidation of Metals, 2006, 65(5/6):409-439.
|
[5] |
张永刚,韩雅芳,陈国良. 金属间化合物结构材料[M]. 北京:国防工业出版社, 2001.
|
[6] |
高海燕,贺跃辉,沈培智,等. FeAl金属间化合物多孔材料的制备[J]. 材料研究学报, 2008, 22(5):485-489.
|
[7] |
STOLOFF N S, SIKKA V K. Physical metallurgy and processing of intermetallic compounds[M]. London:Chapman & Hall, 1996:351-352.
|
[8] |
MCKAMEY C G, DEVAN J H, TORTORELLI P F, et al. A review of recent developments in Fe3Al-based alloys[J]. Journal of Materials Research, 1991, 6(8):1779-1805.
|
[9] |
KUPKA M. Technological plasticity studies of the FeAl intermetallic phase-based alloy[J]. Intermetallics, 2004, 12(3):295-302.
|
[10] |
LIU C T, LEE E H, MCKAMEY C G. An environmental-effect as the major cause for room-temperature embrittlement in feal[J]. Scripta Metallurgica, 1989, 23(6):875-880.
|
[11] |
ZHU Y F, LIU C T, CHEN C H. Direct evidence of hydrogen generation from the reaction of water with FeAl[J]. Scripta Materialia, 1996, 35(12):1435-1439.
|
[12] |
BALASUBRAMANIAM R. Hydrogen in iron aluminides[J]. Journal of Alloys and Compounds, 2002, 330:506-510.
|
[13] |
YANG Y, HANADA S. Absorption and desorption of hydrogen in Fe-40Al intermetallic[J]. Scripta Metallurgica et Materialia, 1995, 32(11):1719-1724.
|
[14] |
DEVANATHAN M A V, STACHURSKI Z. The adsorption and diffusion of electrolytic hydrogen in palladium[J]. Proceedings of the Royal Society of London, 1962, 270(1340):90-102.
|
[15] |
PRAKASH U, PARVATHAVARTHINI N, DAYAL R K. Effect of composition on hydrogen permeation in Fe-Al alloys[J]. Intermetallics, 2007, 15(1):17-19.
|
[16] |
LUU W C, WU J K. Influence of aluminium content on retarding hydrogen transport in Fe-Al binary alloys[J]. Corrosion Science, 2001, 43(12):2325-2333.
|
[17] |
KUPKA M. High temperature strengthening of the FeAl intermetallic phase-based alloy[J]. Intermetallics, 2006, 14(2):149-155.
|
[18] |
KUPKA M, STPIE AŃ K. Hydrogen permeation in Fe-40 at.% Al alloy at different temperatures[J]. Corrosion Science, 2009, 51(3):699-702.
|
[19] |
KATSUTA H, FARRARO R J, MCLELLAN R B. Diffusivity of hydrogen in palladium[J]. Acta Metallurgica, 1979, 27(7):1111-1114.
|
[20] |
KUPKA M, STPIE AŃ K, NOWAK K. Studies on hydrogen diffusivity in iron aluminides using the Devanathan-Stachurski method[J]. Journal of Physics and Chemistry of Solids, 2014, 75(3):344-350.
|
[21] |
CHIU H, QIAO L, MAO X. Environment-assisted cracking of iron aluminide in 3.5% NaCl solution[J]. Scripta Materialia, 1996, 34(6):963-969.
|
[22] |
STPIE AŃ K, KUPKA M. Diffusivity of hydrogen in B2 iron aluminides[J]. Scripta Materialia, 2006, 55(7):585-588.
|
[23] |
IYER R N, PICKERING H W, ZAMANZADEH M. A mechanistic analysis of hydrogen entry into metals during cathodic hydrogen charging[J]. Scripta Metallurgica, 1988, 22(6):911-916.
|