• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
ZHU Hao, ZHANG Mei, YE Qingliang. Microstructure and Impact Toughness of Heat Affected Zone of FB780 Steel Welded Joint with Different Welding Processes[J]. Materials and Mechanical Engineering, 2019, 43(1): 54-57,63. DOI: 10.11973/jxgccl201901012
Citation: ZHU Hao, ZHANG Mei, YE Qingliang. Microstructure and Impact Toughness of Heat Affected Zone of FB780 Steel Welded Joint with Different Welding Processes[J]. Materials and Mechanical Engineering, 2019, 43(1): 54-57,63. DOI: 10.11973/jxgccl201901012

Microstructure and Impact Toughness of Heat Affected Zone of FB780 Steel Welded Joint with Different Welding Processes

More Information
  • Received Date: October 24, 2017
  • Revised Date: December 09, 2018
  • The thermal cycle process of the heat affected zone (HAZ) of FB780 steel welded joint under single pass welding condition was simulated by the Gleeble-3500 thermomechanical simulator. The microstructures of HAZ at different welding peak temperatures and for different t8/5 times (cooling time from 800℃ to 500℃) were studied, and the micro-hardness and impact toughness of HAZ under different welding conditions were tested. The results show that when the t8/5 was the same, the microstructure of HAZ coarsened with the increase of peak temperature. When the peak temperature was constant, with the increase of t8/5, the ferrite lath widened and gradually intergrated; the M/A component coarsened; the coarse ferrite grains were mixed with the fine quasi-polygonal ferrite grains; the metallographic homogeneity deteriorated. At the same peak temperature, the hardness and impact energy of HAZ decreased with the increase of t8/5. At the peak temperature of 1 175℃ and t8/5 of 6 s, the impact fracture morphology of HAZ at low temperature (-20℃) showed dimple pattern, and the dimple was relatively large; the toughness of HAZ at low temperature matched with that of the base metal; the hardness was relatively high; all indicated that the process was the best single pass welding process.
  • [1]
    王瑞珍, 罗海文, 董瀚. 汽车用高强度钢板的最新研究进展[J]. 中国冶金, 2006,16(9):1-9.
    [2]
    王建萍. 展望21世纪焊接技术[J]. 汽车工艺与材料, 2008(2):2-5.
    [3]
    史耀武, 韩准祥. 工程机械用800 MPa低合金高强度钢焊接接头断裂韧性评价[J]. 热加工工艺, 2006, 35(3):1-5.
    [4]
    赵玉珍, 李擘, 史耀武. 超级钢焊接接头粗晶区的精细结构[J]. 金属学报, 2003, 39(5):505-509.
    [5]
    章友谊, 屈金山, 杨跃. Domex700MC低合金高强度钢焊接接头显微组织分析[J]. 热加工工艺, 2007, 36(23):30-32.
    [6]
    邵国良, 宗培, 陈爱志, 等. 高强度低合金结构钢焊缝与母材的强度匹配研究[J]. 焊接技术, 2004, 33(3):8-10.
    [7]
    赵琳, 张旭东, 陈武柱. 800 MPa级低合金钢焊接热影响区韧性的研究[J]. 金属学报, 2005, 41(4):392-396.
    [8]
    张卫群. Q690低合金高强度钢的焊接工艺分析[J]. 金属加工:热加工, 2008(22):52-56.
    [9]
    马成勇, 田志凌, 杜则裕, 等. 热输入对800 MPa级钢接头组织及性能的影响[J]. 焊接学报, 2004, 25(2):23-27.
    [10]
    杜则裕, 张德勤, 田志凌. 低碳低合金钢焊缝金属的显微组织及其影响因素[J]. 钢铁, 1999(12):67-71.
    [11]
    杨政, 郭万林, 霍春勇. X70管线钢不同温度下断裂韧性实验研究[J]. 金属学报, 2003, 39(9):908-913.
    [12]
    李红英, 魏冬冬, 林武, 等. X80管线钢冲击韧性研究[J]. 材料热处理学报, 2010, 31(11):73-78.
    [13]
    周民, 杜林秀, 刘相华, 等. 不同温度下X100管线钢的冲击韧性[J]. 塑性工程学报, 2010, 17(5):108-113.

Catalog

    Article views (10) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return