Citation: | YU Rui, LI Ziyong, FU Liming, YIN Liqiang, LI Jin, SHAN Aidang. Effects of Al Addition on Microstructure and Electrochemical Property of FeCoCrNiMn High-Entropy Alloy in Different Treatment States[J]. Materials and Mechanical Engineering, 2019, 43(2): 1-6. DOI: 10.11973/jxgccl201902001 |
[1] |
YEH J W, CHEN S K, LIN S J, et al. Nanosturctured high-entropy alloys with mutiple principal elements:Novel alloy design concept and outcomes[J]. Advanced Engineering Materials, 2004, 6(5):299-303.
|
[2] |
ZHANG Y, ZHOU Y J, LIN J P, et al. Solid-solution phase formation rules for multi-component alloys[J]. Advanced Engineering Materials, 2008, 10(6):534-538.
|
[3] |
ZHANG Y, ZUO T T, TANG Z, et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 2014, 61:1-93.
|
[4] |
SANTODONATO L J, ZHANG Y, FEYGENSON M, et al. Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy[J]. Nature Communications, 2015, 6:5964.
|
[5] |
ZHANG Y, YANG X, LIAW P K. Alloy design and properties optimization of high-entropy alloys[J]. JOM, 2012, 64(7):830-838.
|
[6] |
SENKOV O N, WILKS G B, MIRACLE D B, et al. Refractory high-entropy alloys[J]. Intermetallics, 2010, 18(9):1758-1765.
|
[7] |
HE J Y, LIU W H, WANG H, et al. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system[J]. Acta Materialia, 2014, 62:105-113.
|
[8] |
WU Y D, CAI Y H, WANG T, et al. A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties[J]. Materials Letters, 2014, 130:277-280.
|
[9] |
SCHUH B, MENDEZ-MARTIN F, VÖLKER B, et al. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation[J]. Acta Materialia, 2015, 96:258-268.
|
[10] |
LU Y, GAO X, JIANG L, et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range[J]. Acta Materialia, 2017, 124:143-150.
|
[11] |
CHUANG M H, TSAI M H, WANG W R, et al. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys[J]. Acta Materialia, 2011, 59:6308-6317.
|
[12] |
LI Z, PRADEEP K G, DENG Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off[J]. Nature, 2016, 534(7606):227-230.
|
[13] |
TANG Z, YUAN T, TSAI C W, et al. Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy[J]. Acta Materialia, 2015, 99:247-258.
|
[14] |
SHAHMIR H, HE J, LU Z, et al. Effect of annealing on mechanical properties of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion[J]. Materials Science and Engineering:A, 2016, 676:294-303.
|
[15] |
TANG Z, GAO M C, DIAO H, et al. Aluminum alloying effects on lattice types, microstructures, and mechanical behavior of high-entropy alloys systems[J]. JOM, 2013, 65(12):1848-1858.
|
[16] |
STEPANOV N, TIKHONOVSKY M, YURCHENKO N, et al. Effect of cryo-deformation on structure and properties of CoCrFeNiMn high-entropy alloy[J]. Intermetallics, 2015, 59:8-17.
|
[17] |
OTTO F, DLOUH AY'G A, SOMSEN C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy[J]. Acta Materialia, 2013, 61(15):5743-5755.
|
[18] |
孙永哲, 田笑, 魏亚风, 等. 热处理对冷轧变形Al0.3CoCrFeNi高熵合金组织与力学性能的影响[J]. 材料热处理学报, 2017, 38(9):18-23.
|
[19] |
LEE C P, CHEN Y Y, HSU C Y, et al. The effect of boron on the corrosion resistance of the high entropy alloys Al0.5CoCrCuFeNiBx[J]. Journal of the Electrochemical Society, 2007, 154(8):C424-C430.
|
[20] |
QIU X W, ZHANG Y P, LIU C G. Effect of Ti content on structure and properties of Al2CrFeNiCoCuTix high-entropy alloy coatings[J]. Journal of Alloys and Compounds, 2014, 585:282-286.
|
[21] |
饶湖常, 戴品强, 陈鼎宁, 等. 碳含量对FeCoCrNiMnCx高熵合金显微组织与性能的影响[J]. 机械工程材料, 2016, 40(8):76-80.
|
[22] |
CHOU Y L, YEH J W, SHIH H C. The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments[J]. Corrosion Science, 2010, 52(8):2571-2581.
|
[23] |
KAO Y F, LEE T D, CHEN S K, et al. Electrochemical passive properties of AlxCoCrFeNi (x=0, 0.25, 0.50, 1.00) alloys in sulfuric acids[J]. Corrosion Science, 2010, 52:1026-1034.
|
[24] |
黄艺娜, 唐群华, 戴品强. 轧制变形对Al0.3CoCrFeNi高熵合金显微组织和性能的影响[J]. 机械工程材料, 2015, 39(8):41-54.
|
[25] |
BAGHERPOUR E, REIHANIAN M, EBRAHIMI R. Processing twining induced plasticity steel through simple shear extrusion[J]. Materials & Design, 2012, 40:262-267.
|
[26] |
ZHENG Z J, GAO Y, GUI Y, et al. Corrosion behaviour of nanocrystalline 304 stainless steel prepared by equal channel angular pressing[J]. Corrosion Science, 2012, 54:60-67.
|
[27] |
KAO Y F, CHEN T J, CHEN S K, et al. Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0≤ x ≤ 2) high-entropy alloys[J]. Journal of Alloys and Compounds, 2009, 488:57-64.
|
[28] |
NILSSON J O, WILSON A. Influence of isothermal phase transformations on toughness and pitting corrosion of super duplex stainless steel SAF 2507[J]. Materials Science & Technology, 1993, 9(7):545-554.
|
[29] |
LEE C P, CHANG C C, CHEN Y Y, et al. Effect of the aluminium content of AlxCrFe1.5MnNi0.5 high-entropy alloys on the corrosion behaviour in aqueous environments[J]. Corrosion Science, 2008, 50(7):2053-2060.
|