Citation: | CAI Xiao, SHI Qiaoying, XING Baihui, CHEN Xingyang, ZHOU Chengshuang, ZHANG Lin. Effect of δ-ferrite on Susceptibility to Hydrogen Embrittlement of 304 Austenitic Stainless Steel in High-Pressure Hydrogen[J]. Materials and Mechanical Engineering, 2019, 43(2): 7-12. DOI: 10.11973/jxgccl201902002 |
[1] |
SAN MARCHI C, SOMERDAY B P, ROBINSON S L. Permeability, solubility and diffusivity of hydrogen isotopes in stainless steels at high gas pressures[J]. International Journal of Hydrogen Energy, 2007, 32(1):100-116.
|
[2] |
MINE Y, NARAZAKI C, MURAKAMI K, et al. Hydrogen transport in solution-treated and pre-strained austenitic stainless steels and its role in hydrogen-enhanced fatigue crack growth[J]. International Journal of Hydrogen Energy, 2009, 34(2):1097-1107.
|
[3] |
ELIEZER D, CHAKRAPANI D G, ALTSTETTER C J, et al. The influence of austenite stability on the hydrogen embrittlement and stress-corrosion cracking of stainless steel[J]. Metallurgical Transactions A, 1979, 10(7):935-941.
|
[4] |
LIU R, NARITA N, ALTSTETTER C, et al. Studies of the orientations of fracture surfaces produced in austenitic stainless steels by stress-corrosion cracking and hydrogen embrittlement[J]. Metallurgical Transactions A, 1980, 11(9):1563-1574.
|
[5] |
VENNETT R M, ANSELL G S. The effect of high-pressure hydrogen upon the tensile properties and fracture behavior of 304L stainless steel[J]. Transactions of ASM, 1967, 60(2):242-251.
|
[6] |
MARTIN M, WEBER S, THEISEN W, et al. Effect of alloying elements on hydrogen environment embrittlement of AISI type 304 austenitic stainless steel[J]. International Journal of Hydrogen Energy, 2011, 36(24):15888-15898.
|
[7] |
MICHLER T, MARCHI C S, NAUMANN J, et al. Hydrogen environment embrittlement of stable austenitic steels[J]. International Journal of Hydrogen Energy, 2012, 37(21):16231-16246.
|
[8] |
MICHLER T, NAUMANN J. Hydrogen environment embrittlement of austenitic stainless steels at low temperatures[J]. International Journal of Hydrogen Energy, 2008, 33(8):2111-2122.
|
[9] |
HAN G, HE J, FUKUYAMA S, et al. Effect of strain induced martensite on hydrogen environment embrittlement of sensitized austenitic stainless steels at low temperatures[J]. Acta Materialia, 1998, 46(13):4559-4570.
|
[10] |
ZHANG L, WEN M, IMADE M, et al. Effect of nickel equivalent on hydrogen gas embrittlement of austenitic stainless steels based on type 316 at low temperatures[J]. Acta Materialia, 2008, 56(14):3414-3421.
|
[11] |
ZHANG L, IMADE M, AN B, et al. Internal reversible hydrogen embrittlement of austenitic stainless steels based on type 316 at low temperatures[J]. Journal of the Iron & Steel Institute of Japan, 2013, 99(4):294-301.
|
[12] |
ZHANG L, LI Z Y, ZHENG J Y, et al. Influence of low temperature prestrain on hydrogen gas embrittlement of metastable austenitic stainless steels[J]. International Journal of Hydrogen Energy, 2013, 38(25):11181-11187.
|
[13] |
MYLLYKOSKI L, SUUTALA N. Effect of solidification mode on hot ductility of austenitic stainless steel[J]. Metals Technology, 1983, 10(1):453-460.
|
[14] |
RHO B S, HONG H U, NAM S W. The fatigue crack initiation at the interface between matrix and δ-ferrite in 304L stainless steel[J].Scripta Materialia,1998,39(10):1407-1412.
|
[15] |
姜勇, 巩建鸣, 周荣荣, 等. 氢对304L奥氏体不锈钢力学性能的影响[J]. 机械工程材料, 2009, 33(11):15-18.
|
[16] |
PERNG T P, ALTSTETTER C J. Effects of deformation on hydrogen permeation in austenitic stainless steels[J]. Acta Metallurgica, 1986, 34(9):1771-1781.
|
[17] |
PERNG T P, JOHNSON M, ALTSTETTER C J. Influence of plastic deformation on hydrogen diffusion and permeation in stainless steels[J]. Acta Metallurgica, 1989, 37(12):3393-3397.
|
[18] |
MURAKAMI Y, KANAZAKI T, MINE Y, et al. Hydrogen embrittlement mechanism in fatigue of austenitic stainless steels[J]. Metallurgical & Materials Transactions A, 2008, 39(6):1327-1339.
|
[19] |
MATSUOKA S, TSUTSUMI N, MURAKAMI Y. Effects of hydrogen on fatigue crack growth and stretch zone of 0.08mass%C low carbon steel pipe[J]. Transactions of the Japan Society of Mechanical Engineers A, 2008, 74(748):1528-1537.
|
[20] |
MATSUOKA S, TANAKA H, HOMMA N, et al. Influence of hydrogen and frequency on fatigue crack growth behavior of Cr-Mo steel[J]. International Journal of Fracture, 2011, 168(1):101-112.
|