• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
LIU Fengjuan, CHEN Yonglai, YU Feng, HE Shihuan, LIN Jun, YAO Caogen. Optimization of Chemical Milling Process of 2195 Al-Li Alloy[J]. Materials and Mechanical Engineering, 2019, 43(2): 34-38,42. DOI: 10.11973/jxgccl201902007
Citation: LIU Fengjuan, CHEN Yonglai, YU Feng, HE Shihuan, LIN Jun, YAO Caogen. Optimization of Chemical Milling Process of 2195 Al-Li Alloy[J]. Materials and Mechanical Engineering, 2019, 43(2): 34-38,42. DOI: 10.11973/jxgccl201902007

Optimization of Chemical Milling Process of 2195 Al-Li Alloy

More Information
  • Received Date: November 05, 2017
  • Revised Date: December 07, 2018
  • 2195 Al-Li alloy was machined by chemical milling in two chemical milling solutions (NaOH+Al3++Na2S+triethanolamine and NaOH+Al3++Na2S2O45H2O). The relatively suitable chemical milling solution was determined and its composition was optimized by orthogonal test. The tested alloy was machined by chemical milling in the optimal chemical milling solution. The effects of chemical milling temperature on the chemical milling rate and surface roughness were studied and the surface morphology and tensile property before and after chemical milling were compared. The results show that the chemical milling solution made up of NaOH, Al3+, Na2S and triethanolamine had a better chemical milling effect on the tested alloy than that of NaOH, Al3+ and Na2S2O4·5H2O, and its optimal composition was listed as follows:210 g·L-1 NaOH, 40 g·L-1 Na2S, 30 g·L-1 Al3+ and 50 mL·L-1 triethanolamine. In the optimal chemical milling solution, with rising chemical milling temperature, the chemical milling rate of the tested alloy increased whereas the etching ratio increased and then decreased. The chemical milling temperature was relatively suitable at 85-95℃. The surface of the tested alloy had no defects such as cracks and corrosion holes after chemical milling in the optimal chemical milling solution at 85℃ to the depth around 4.3 mm, and the tensile property after chemical milling at 85-95℃ to the depth around 3.0 mm was similar to that before chemical milling.
  • [1]
    熊焕. 低温贮箱及铝锂合金的应用[J]. 导弹与航天运载技术,2001(6):37-39.
    [2]
    阳志光,范瑞祥. 1420铝锂合金在宇航薄壁加筋铆接结构上的应用研究[J].宇航材料工艺,1998(4):74-76.
    [3]
    邱慧中.国外Al-Li合金及其航天产品的制造技术[J].宇航材料工艺,1998(4):39-43.
    [4]
    金以元.火箭贮箱壁板化学铣切装备的设计[J].导弹与航天运载技术,2009(2):52-56.
    [5]
    周一扬,黄明珠,李澄.铝合金的化学铣切加工[J].模具技术,2000(1):90-91.
    [6]
    尹茂生,廖广其,文庆杰,等.铝合金筒段化学铣切工艺研究[J].材料保护,2005,38(8):24-25.
    [7]
    廖广其,尹茂生,朱晓英.化学铣切对铝合金基体粗糙度的影响[J].涂料涂装与电镀,2005,3(6):38-39.
    [8]
    陈庆龙.铝合金化学铣切工艺及机理研究[D].南昌:南昌航空大学,2011.
    [9]
    毛大恒,张灿,周亚军,等.2197铝锂合金化学铣切工艺的探讨[J].材料保护,2010,43(10):33-36.
    [10]
    中国航天工业总公司二一一厂.铝合金化学铣切工艺规范:QJ 2911-1997[S].北京:中国航天工业总公司七O八所,1997.
    [11]
    中国航空综合技术研究所,北京航空制造工程研究所,沈阳飞机工业(集团)有限责任公司.铝合金在碱性溶液中化学铣切工艺:HB/Z 5125-2008[S].北京:中国航空综合技术研究所,2008.
    [12]
    胡铁牛. 热处理工艺对2195铝锂合金低温力学性能影响规律研究[D].哈尔滨:哈尔滨工业大学,2008.

Catalog

    Article views (10) PDF downloads (3) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return