Citation: | HU Li, ZHANG Guikai, TANG Tao. Research Progress on Formation Mechanism and Low Temperature Preparation Technology of Al2O3 Film on Surface of FeAl/Al2O3 Tritium Permeation Barrier[J]. Materials and Mechanical Engineering, 2019, 43(6): 1-7. DOI: 10.11973/jxgccl201906001 |
[1] |
张桂凯, 向鑫, 杨飞龙, 等. 我国聚变堆结构材料表面阻氚涂层的研究进展[J]. 核化学与放射化学, 2015, 37(5):310-320.
|
[2] |
CRISTESCU I R, CRISTESCU I, DOERR L, et al. Tritium inventories and tritium safety design principles for the fuel cycle of ITER[J]. Nuclear Fusion, 2007, 47(7):458-463.
|
[3] |
CAUSEY R A, KAMESKY R A, SAN MARCHI C. Tritium barriers and tritium diffusion in fusion reactors[J]. Comprehensive Nuclear Materials, 2012, 4:511-549.
|
[4] |
DEVIA D M, RESTREPO-PARRA E, ARANGO P J. Comparative study of titanium carbide and nitride coatings grown by cathodic vacuum arc technique[J]. Applied Surface Science, 2011, 258(3):1164-1174.
|
[5] |
NEMANIČ V, MCGUINESS P J, DANEU N, et al. Hydrogen permeation through silicon nitride films[J]. Journal of Alloys and Compounds, 2012, 539:184-189.
|
[6] |
ZHANG G K, CHEN C A, LUO D L, et al. An advance process of aluminum rich coating as tritium permeation barrier on 321 steel workpiece[J]. Fusion Engineering and Design, 2012, 87(7/8):1370-1375.
|
[7] |
山常起. 氢同位素在一些材料中的溶解度系数、扩散系数和渗透率[J]. 中国核科技报告, 1992(增刊3):281-300.
|
[8] |
LEVCHUK D, KOCH F, MAIER H, et al. Gas-driven deuterium permeation through Al2O3 coated samples[J]. Physica Scripta, 2004:119.
|
[9] |
吴艳萍, 王庆富, 蒋驰,等. 1Cr18Ni9Ti不锈钢表面Al2O3阻氚涂层磁控溅射-微弧氧化法制备技术研究[J]. 功能材料, 2016, 47(9):9187-9191.
|
[10] |
FAZIO C, STEIN-FECHNER K, SERRA E, et al. Investigation on the suitability of plasma sprayed Fe-Cr-Al coatings as tritium permeation barrier[J]. Journal of Nuclear Materials, 1999, 273(3):233-238.
|
[11] |
张永刚, 韩雅芳, 陈国良, 等. 金属间化合物结构材料[M]. 北京:国防工业出版社,2001.
|
[12] |
GESMUNDO F, NIU Y, WANG W. An approximate analysis of the external oxidation of ternary alloys forming insoluble oxides. Ⅱ:Low oxidant pressures[J]. Oxidation of Metals, 2001, 56(5/6):537-549.
|
[13] |
张志刚, 张学军, 潘太军, 等. Fe-Al和Fe-Cr-Al合金在高温下的初期氧化[J]. 钢铁研究, 2007, 35(3):38-42.
|
[14] |
TOMASZEWICZ P, WALLWORK G R. Iron-aluminum alloys:A review of their oxidation behavior[J]. Review on High Temperature Materials, 1978, 4(1):75-105.
|
[15] |
张志刚, HOU P Y, 牛焱. Fe-xCr-10Al(x=0, 5, 10)合金在900℃的氧化:第三组元作用的新例子[J]. 金属学报, 2005, 41(6):649-654.
|
[16] |
GULBRANSEN E A, ANDREW K F. Oxidation studies on the iron-chromium-aluminum heater alloys[J]. Journal of the Electrochemical Society, 1959, 106(4):294-302.
|
[17] |
HAGEL W C. The oxidation off iron, nickel and cobalt-base alloys containing aluminum[J]. Corrosion, 1965, 21(10):316-326.
|
[18] |
REGINA J R, DUPONT J N, MARDER A R. Gaseous corrosion resistance of Fe-Al-based alloys containing Cr additions:Part I:kinetic results[J]. Materials Science and Engineering:A, 2005, 404(1/2):71-78.
|
[19] |
ROBINO C V. Representation of mixed reactive gases on free energy (Ellingharn-Richardson) diagrams[J]. Metallurgical and Materials Transactions B, 1996, 27(1):65-69.
|
[20] |
谈萍, 陈金妹, 汤慧萍, 等. FeAl系合金抗高温氧化性能研究进展[J]. 功能材料, 2012, 43(增刊1):29-32.
|
[21] |
HUTCHINGS R, LORETTO M H. Compositional dependence of oxidation rates of NiAl and CoAl[J]. Metal Science, 1978, 12(11):503-510.
|
[22] |
SAEGUSA F, LEE L. Oxidation of iron-aluminum alloys in the range 500-1000℃[J]. Corrosion, 1966, 22(6):168-177.
|
[23] |
AHMED H A, SMELTZER W W. Oxidation properties of Fe-Al alloys (1.5-5 a/o Al) in oxygen at 1173 K[J]. Journal of the Electrochemical Society, 1986, 133(1):212-216.
|
[24] |
ZHANG Z G, GESMUNDO F, HOU P Y, et al. Criteria for the formation of protective Al2O3 scales on Fe-Al and Fe-Cr-Al alloys[J]. Corrosion Science, 2006, 48(3):741-765.
|
[25] |
LANG F Q, YU Z M, GEDEVANISHVILI S, et al. Isothermal oxidation behavior of a sheet alloy of Fe-40at.%Al at temperatures between 1073 and 1473 K[J]. Intermetallics, 2003, 11(7):697-705.
|
[26] |
ALVARADO-OROZCO J M, MORALES-ESTRELLA R, BOLDRICK M S, et al. Kinetic study of the competitive growth between θ-Al2O3 and α-Al2O3 during the early stages of oxidation of β-(Ni, Pt)Al bond coat systems:Effects of low oxygen partial pressure and temperature[J]. Metallurgical and Materials Transactions A, 2015, 46(2):726-738.
|
[27] |
BRUMM M W, GRABKE H J. The oxidation behaviour of NiAl:I. Phase transformations in the alumina scale during oxidation of NiAl and NiAl-Cr alloys[J]. Corrosion Science, 1992, 33(11):1677-1690.
|
[28] |
孙祖庆, 黄原定, 杨王玥, 等. Fe3Al基金属间化合物合金强韧化途径探索[J]. 金属学报, 1993, 29(8):20-24.
|
[29] |
HUNTZ A M, HOU P Y, MOLINS R. Study by deflection of the oxygen pressure influence on the phase transformation in alumina thin films formed by oxidation of Fe3Al[J]. Materials Science and Engineering:A, 2007, 467(1/2):59-70.
|
[30] |
QUADAKKERS W J, ELSCHNER A, SPEIER W, et al. Composition and growth mechanisms of alumina scales on FeCrAl-based alloys determined by SNMS[J]. Applied Surface Science, 1991, 52(4):271-287.
|
[31] |
JAMNAPARA N I, MUKHERJEE S, KHANNA A S. Phase transformation of alumina coating by plasma assisted tempering of aluminized P91 steels[J]. Journal of Nuclear Materials, 2015, 464:73-79.
|
[32] |
HUNTZ A M, ABDERRAZIK G B, MOULIN G, et al. Yttrium influence on the alumina growth mechanism on an FeCr23Al5 alloy[J]. Applied Surface Science, 1987, 28(4):345-366.
|
[33] |
SOLIMAN H M, MOHAMED K E, EL-AZIM M E A, et al. Oxidation resistance of the aluminide coating formed on carbon steels[J]. Journal of Materials Science and Technology, 2009, 13(5):383-388.
|
[34] |
SÁNCHEZ L, BOLÍVAR F J, HIERRO M P, et al. Temperature dependence of the oxide growth on aluminized 9-12%Cr ferritic-martensitic steels exposed to water vapour oxidation[J]. Thin Solid Films, 2009, 517(11):3292-3298.
|
[35] |
KITAJIMA Y, HAYASHI S, NISHIMOTO T,et al. Acceleration of metastable to alpha transformation of Al2O3 scale on Fe-Al alloy by pure-metal coatings at 900℃[J]. Oxidation of Metals, 2011, 75(1/2):41-56.
|
[36] |
向鑫. 铝化物阻氘涂层中的基底效应研究[D]. 北京:中国工程物理研究院, 2016.
|
[37] |
ANDERSSON J M, WALLIN E, HELMERSSON U, et al. Phase control of Al2O3 thin films grown at low temperatures[J]. Thin Solid Films, 2006, 513(1/2):57-59.
|
[38] |
ANDERSSON J M, CZIGÁNY Z, JIN P, et al. Microstructure of α-alumina thin films deposited at low temperatures on chromia template layers[J]. Journal of Vacuum Science and Technology A:Vacuum, Surfaces, and Films, 2004, 22(1):117-121.
|
[39] |
ZHAN Q, ZHAO W W, YANG H G, et al. Formation of α-alumina scales in the Fe-Al(Cr) diffusion coating on China low activation martensitic steel[J]. Journal of Nuclear Materials, 2015, 464:135-139.
|
[40] |
EKLUND P, SRIDHARAN M, SILLASSEN M, et al. α-Cr2O3 template-texture effect on α-Al2O3 thin-film growth[J]. Thin Solid Films, 2008, 516(21):7447-7450.
|
[41] |
KITAJIMA Y, HAYASHI S, NISHIMOTO T, et al. Acceleration of metastable to alpha transformation of Al2O3 scale on Fe-Al alloy by pure-metal coatings at 900℃[J]. Oxidation of Metals, 2011, 75(1/2):41-56.
|
[42] |
ROVERE F, MAYRHOFER P H, REINHOLDT A, et al. The effect of yttrium incorporation on the oxidation resistance of Cr-Al-N coatings[J]. Surface and Coatings Technology, 2008, 202(24):5870-5875.
|
[43] |
AHMADI H, LI D Y. Mechanical and tribological properties of aluminide coating modified with yttrium[J]. Surface and Coatings Technology, 2002, 161(2/3):210-217.
|
[44] |
ZHAN Q, YANG H G, ZHAO W W, et al. Characterization of the alumina film with cerium doped on the iron-aluminide diffusion coating[J]. Journal of Nuclear Materials, 2013, 442(1/2/3):603-606.
|
[45] |
JEDLI AN'G SKI J. Comments on the effect of yttrium on the early stages of oxidation of alumina formers[J]. Oxidation of Metals, 1993, 39(1/2):55-60.
|
[46] |
YOU Y, ITO A, TU R, et al. Low-temperature deposition of α-Al2O3 films by laser chemical vapor deposition using a diode laser[J]. Applied Surface Science, 2010, 256(12):3906-3911.
|
[47] |
KYRYLOV O, KURAPOV D, SCHNEIDER J M. Effect of ion irradiation during deposition on the structure of alumina thin films grown by plasma assisted chemical vapour deposition[J]. Applied Physics A, 2005, 80(8):1657-1660.
|
[48] |
ZYWITZKI O, HOETZSCH G, FIETZKE F, et al. Effect of the substrate temperature on the structure and properties of Al2O3 layers reactively deposited by pulsed magnetron sputtering[J]. Surface and Coatings Technology, 1996, 82(1/2):169-175.
|
[49] |
ROSÉN J, MRÁZ S, KREISSIG U, et al. Effect of ion energy on structure and composition of cathodic arc deposited alumina thin films[J]. Plasma Chemistry and Plasma Processing, 2005, 25(4):303-317.
|
[50] |
WALLIN E, SELINDER T I, ELFWING M, et al. Synthesis of α-Al2O3 thin films using reactive high-power impulse magnetron sputtering[J]. EPL (Europhysics Letters), 2008, 82(3):36002.
|
[51] |
SCHNEIDER J M, SPROUL W D, VOEVODIN A A, et al. Crystalline alumina deposited at low temperatures by ionized magnetron sputtering[J]. Journal of Vacuum Science and Technology A:Vacuum, Surfaces, and Films, 1997, 15(3):1084-1088.
|