Citation: | NIE Xiaoqian, ZHANG Chengcheng, WANG Runzi, ZHANG Xiancheng, TU Shantong. Creep-Fatigue Interaction Behavior of Powder Metallurgy Nickel-Based Superalloy FGH96[J]. Materials and Mechanical Engineering, 2019, 43(6): 8-11,17. DOI: 10.11973/jxgccl201906002 |
[1] |
ZHUANG W Z, SWANSSON N S. Thermo-mechanical fatigue life prediction:A critical review[R]. Melbourne Victoria, Australia:DSTO Aeronautical and Maritime Research Laboratory,1998.
|
[2] |
刘新灵,周家盛,钟培道,等.某发动机Ⅲ级涡轮叶片断裂失效分析[J].机械工程材料,2005, 29(8):67-70.
|
[3] |
THAKKER A B, COWLES B A. Low strain, long life creep fatigue of AF2-1DA and INCO 718[R].[S.l.]:NASA,1983.
|
[4] |
谢锡善.我国高温材料的应用与发展[J].机械工程材料,2004, 28(1):2-8.
|
[5] |
王春水,彭志方.镍基高温合金设计方法的研究进展[J].机械工程材料,2005, 29(1):4-6.
|
[6] |
SABOUR M H. Creep-fatigue interaction in aircraft gas turbine components by simulation and testing at scaled temperatures[D]. Montreal:Concordia University, 2005.
|
[7] |
豪斯纳. 粉末冶金手册[M]. 北京市粉末冶金研究所, 译. 北京:冶金工业出版社, 1982.
|
[8] |
邹金文,汪武祥.粉末高温合金研究进展与应用[J].航空材料学报, 2006,26(3):244-250.
|
[9] |
ANDERSON R. Powder metallurgy at Pratt and Whitney[J]. International of Powder Matallurgy, 1990, 26(2):11-18.
|
[10] |
汪武祥,杨万宏.俄罗斯粉末高温合金技术与经济性分析[J].航空制造工程,1998(5):21-23.
|
[11] |
SULLIVAN K H, MILBERRY L. Power:The Pratt & Whitney Canada Story[M]. Toronto:[s.n.], 1989.
|
[12] |
COUTURIER R, BURLET H, TERZI S, et al. Process development and mechanical properties of alloy U720LI for high temperature turbine disks[C]//Superalloys 2004.[S.l.]:[s.n.], 2004:351-359.
|
[13] |
RAUJOL S, PETTINARI F, LOCQ D, et al. Creep straining micro-mechanisms in a powder-metallurgical nickel-based superalloy[J]. Materials Science and Engineering:A, 2004, 387/388/389:678-682.
|
[14] |
TERZI S, COUTURIER R, GUÉTAZ L, et al. Modelling the plastic deformation during high-temperature creep of a powder-metallurgy coarse-grained superalloy[J]. Materials Science and Engineering:A, 2008, 483/484:598-601.
|
[15] |
宋迎东,高德平.粉末冶金与常规高温合金构件应力与疲劳寿命对比[J].机械工程材料, 1999,33(2):9-11.
|
[16] |
刘君滨. FGH97粉末高温合金盘件组织性能研究[J].中国新技术新产品,2016(5):72-73.
|
[17] |
聂龙飞. FGH96粉末高温合金热变形及动态再结晶演化研究[D]. 大连:大连理工大学, 2014.
|
[18] |
姚志浩,董建新,张麦仓,等.组织特征对粉末高温合金FGH96疲劳裂纹扩展速率的影响[J].机械工程学报,2013, 49(20):158-164.
|
[19] |
周静怡,刘昌奎,赵文侠,等.粉末高温合金FGH96原始颗粒边界及高温原位高周疲劳研究[J]. 航空材料学报,2017,37(5):83-89.
|
[20] |
PENG Z, TIAN G, JIANG J, et al. Mechanistic behaviour and modelling of creep in powder metallurgy FGH96 nickel superalloy[J]. Materials Science and Engineering:A, 2016, 676:441-449.
|
[21] |
王淑云,李惠曲,杨洪涛.粉末高温合金超塑性等温锻造技术研究[J].航空材料学报,2007,27(5):30-33.
|
[22] |
WEI D S, YANG X G. Investigation and modeling of low cycle fatigue behaviors of two Ni-based superalloys under dwell conditions[J]. International Journal of Pressure Vessels and Piping, 2009, 86(9):616-621.
|