Citation: | LI Na, ZHANG Xiaolin, JIN Xiao, XU Chong, ZHUO Guangming. Effects of Adding KH550 on Micromorphology and Property of Waste Paper Fiber Reinforced Polylactic Acid Composite[J]. Materials and Mechanical Engineering, 2019, 43(7): 5-9,58. DOI: 10.11973/jxgccl201907002 |
[1] |
BLAKER J J, LEE K Y, WALTERS M, et al. Aligned unidirectional PLA/bacterial cellulose nanocomposite fibre reinforced PDLLA composites[J]. Reactive and Functional Polymers, 2014, 85:185-192.
|
[2] |
DONG Y, GHATAURA A, TAKAGI H, et al. Polylactic acid (PLA) biocomposites reinforced with coir fibres:Evaluation of mechanical performance and multifunctional properties[J]. Composites Part A:Applied Science and Manufacturing, 2014, 63(18):76-84.
|
[3] |
FORUZANMEHR M, VUILLAUME P Y, ELKOUN S, et al. Physical and mechanical properties of PLA composites reinforced by TiO2 grafted flax fibers[J]. Materials & Design, 2016, 106:295-304.
|
[4] |
GIL-CASTELL O, BADIA J D, KITTIKORN T, et al. Impact of hydrothermal ageing on the thermal stability, morphology and viscoelastic performance of PLA/sisal biocomposites[J]. Polymer Degradation and Stability, 2016, 132:87-96.
|
[5] |
GRAUPNER N, ZIEGMANN G, WILDE F, et al. Procedural influences on compression and injection moulded cellulose fibre-reinforced polylactide (PLA) composites:Influence of fibre loading, fibre length, fibre orientation and voids[J]. Composites Part A:Applied Science and Manufacturing, 2016, 81:158-171.
|
[6] |
JASZKIEWICZ A, MELJON A, BLEDZKI A K, et al. Gaining knowledge on the processability of PLA-based short-fibre compounds:A comprehensive comparison with their PP counterparts[J]. Composites Part A:Applied Science and Manufacturing, 2016, 83:140-151.
|
[7] |
KOVA AČG EVI AĆG Z, BISCHOF S, VUJASINOVI AĆG E, et al. The influence of pre-treatment of spartium junceum L fibres on the structure and mechanical properties of PLA biocomposites[J]. Arabian Journal of Chemistry, 2019, 12(4):449-463.
|
[8] |
徐冲, 张效林, 丛龙康, 等. 天然纤维增强聚乳酸基可降解复合材料的研究进展[J]. 化工进展, 2017, 36(10):3751-3756.
|
[9] |
LI L Z, HUANG W, WANG B J, et al. Properties and structure of polylactide/poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PLA/PHBV) blend fibers[J]. Polymer, 2015, 68:183-194.
|
[10] |
吴海华, 吴朝, 吕佳炜, 等. 石墨烯/聚乳酸复合材料的制备及性能[J]. 机械工程材料, 2017, 41(4):49-53.
|
[11] |
庄韦, 王菊花, 纪清林, 等. 碳纳米管/聚乳酸复合材料的制备与性能[J]. 机械工程材料, 2012, 36(1):37-40.
|
[12] |
曾广胜, 林瑞珍, 郑良杰, 等. 废纸板纤维/淀粉发泡复合材料加工流变特性及泡孔形态[J]. 复合材料学报, 2013, 30(5):107-112.
|
[13] |
张效林, 薄相峰. 旧报纸纤维增强回收聚丙烯复合材料性能研究[J]. 中国造纸学报, 2014, 29(2):29-32.
|
[14] |
中国造纸协会.中国造纸工业2016年度报告(摘)[J]. 纸和造纸, 2017, 36(4):56-57.
|
[15] |
吴义强, 李新功, 秦志永, 等. 木纤维/聚乳酸可生物降解复合材料的制备和性能研究[J]. 中南林业科技大学学报, 2012, 32(1):100-103.
|
[16] |
CHOLLAKUP R, TANTATHERDTAM R, UJJIN S, et al. Pineapple leaf fiber reinforced thermoplastic composites:Effects of fiber length and fiber content on their characteristics[J]. Journal of Applied Polymer Science, 2011, 119(4):1952-1960.
|
[17] |
YEMELE M C N, KOUBAA A, CLOUTIER A, et al. Effect of bark fiber content and size on the mechanical properties of bark/HDPE composites[J]. Composites Part A:Applied Science and Manufacturing, 2010, 41(1):131-137.
|
[18] |
聂孙建, 张效林, 丛龙康, 等. 界面改性对麦秸秆纤维/聚乙烯复合材料性能的影响[J]. 复合材料学报, 2018, 35(7):1783-1790.
|
[19] |
翟苏宇, 关怀民, 童跃进, 等. 玻璃纤维对聚乳酸力学性能的影响[J]. 广州化工, 2014, 42(7):45-47.
|
[20] |
公艳艳. 椰壳纤维/聚丁二酸丁二醇酯复合材料的研究[D]. 淄博:山东理工大学, 2016.
|
[21] |
傅丹宁,黄彪彪,王占彬,等.利用废纸纤维制备羧甲基纤维素的工艺研究[J].纸和造纸,2018,37(5):16-22.
|
[22] |
MARTIN A R, MARTINS M A. Studies on the thermal properties of sisal fiber and its constituents[J]. Thermochimica Acta,2010,506(1/2):14-19.
|
[23] |
朱斐超, 韩建, 于斌, 等. 熔喷非织造用聚(3-羟基丁酸-3-羟基戊酸共聚酯)/聚乳酸双组分生物降解材料的可纺性能[J]. 纺织学报, 2016, 37(2):21-26.
|
[24] |
AVENA A, BUNSELL A R. Effect of hydrostatic pressure on the water absorption of glass fibre-reinforced epoxy resin[J]. Composites, 1988, 19(5):355-357.
|
[25] |
董琳琳, 黄故. 海水环境下玻璃纤维/聚酯基复合材料的性能研究[J]. 天津工业大学学报, 2007, 26(3):25-27.
|