• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
LI Na, ZHANG Xiaolin, JIN Xiao, XU Chong, ZHUO Guangming. Effects of Adding KH550 on Micromorphology and Property of Waste Paper Fiber Reinforced Polylactic Acid Composite[J]. Materials and Mechanical Engineering, 2019, 43(7): 5-9,58. DOI: 10.11973/jxgccl201907002
Citation: LI Na, ZHANG Xiaolin, JIN Xiao, XU Chong, ZHUO Guangming. Effects of Adding KH550 on Micromorphology and Property of Waste Paper Fiber Reinforced Polylactic Acid Composite[J]. Materials and Mechanical Engineering, 2019, 43(7): 5-9,58. DOI: 10.11973/jxgccl201907002

Effects of Adding KH550 on Micromorphology and Property of Waste Paper Fiber Reinforced Polylactic Acid Composite

More Information
  • Received Date: July 01, 2018
  • Revised Date: June 15, 2019
  • Waste paper fiber/polylactic acid composite was prepared by hot-press molding method. The micromorphology, mechanical properties, thermal stability and water absorption property of the composite before and after adding KH550 were studied. The results show that after adding KH550, the tensile fracture of the waste paper fiber/polylactic acid composite was smoother, and the interfacial compatibility between waste paper fiber and polylactic acid was greatly improved. When KH550 solution with 5% mass fraction was added, the tensile strength and flexural strength of the waste paper fiber/polylactic acid composite added with KH550 increased by 11.2% and 8.4% respectively compared with those without KH550. When KH550 solution with 5% mass fraction was added, the water absorption of waste paper fiber/polylactic acid composite decreased. The addition of KH550 had little effect on the thermal stability of the composite.
  • [1]
    BLAKER J J, LEE K Y, WALTERS M, et al. Aligned unidirectional PLA/bacterial cellulose nanocomposite fibre reinforced PDLLA composites[J]. Reactive and Functional Polymers, 2014, 85:185-192.
    [2]
    DONG Y, GHATAURA A, TAKAGI H, et al. Polylactic acid (PLA) biocomposites reinforced with coir fibres:Evaluation of mechanical performance and multifunctional properties[J]. Composites Part A:Applied Science and Manufacturing, 2014, 63(18):76-84.
    [3]
    FORUZANMEHR M, VUILLAUME P Y, ELKOUN S, et al. Physical and mechanical properties of PLA composites reinforced by TiO2 grafted flax fibers[J]. Materials & Design, 2016, 106:295-304.
    [4]
    GIL-CASTELL O, BADIA J D, KITTIKORN T, et al. Impact of hydrothermal ageing on the thermal stability, morphology and viscoelastic performance of PLA/sisal biocomposites[J]. Polymer Degradation and Stability, 2016, 132:87-96.
    [5]
    GRAUPNER N, ZIEGMANN G, WILDE F, et al. Procedural influences on compression and injection moulded cellulose fibre-reinforced polylactide (PLA) composites:Influence of fibre loading, fibre length, fibre orientation and voids[J]. Composites Part A:Applied Science and Manufacturing, 2016, 81:158-171.
    [6]
    JASZKIEWICZ A, MELJON A, BLEDZKI A K, et al. Gaining knowledge on the processability of PLA-based short-fibre compounds:A comprehensive comparison with their PP counterparts[J]. Composites Part A:Applied Science and Manufacturing, 2016, 83:140-151.
    [7]
    KOVA AČG EVI AĆG Z, BISCHOF S, VUJASINOVI AĆG E, et al. The influence of pre-treatment of spartium junceum L fibres on the structure and mechanical properties of PLA biocomposites[J]. Arabian Journal of Chemistry, 2019, 12(4):449-463.
    [8]
    徐冲, 张效林, 丛龙康, 等. 天然纤维增强聚乳酸基可降解复合材料的研究进展[J]. 化工进展, 2017, 36(10):3751-3756.
    [9]
    LI L Z, HUANG W, WANG B J, et al. Properties and structure of polylactide/poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PLA/PHBV) blend fibers[J]. Polymer, 2015, 68:183-194.
    [10]
    吴海华, 吴朝, 吕佳炜, 等. 石墨烯/聚乳酸复合材料的制备及性能[J]. 机械工程材料, 2017, 41(4):49-53.
    [11]
    庄韦, 王菊花, 纪清林, 等. 碳纳米管/聚乳酸复合材料的制备与性能[J]. 机械工程材料, 2012, 36(1):37-40.
    [12]
    曾广胜, 林瑞珍, 郑良杰, 等. 废纸板纤维/淀粉发泡复合材料加工流变特性及泡孔形态[J]. 复合材料学报, 2013, 30(5):107-112.
    [13]
    张效林, 薄相峰. 旧报纸纤维增强回收聚丙烯复合材料性能研究[J]. 中国造纸学报, 2014, 29(2):29-32.
    [14]
    中国造纸协会.中国造纸工业2016年度报告(摘)[J]. 纸和造纸, 2017, 36(4):56-57.
    [15]
    吴义强, 李新功, 秦志永, 等. 木纤维/聚乳酸可生物降解复合材料的制备和性能研究[J]. 中南林业科技大学学报, 2012, 32(1):100-103.
    [16]
    CHOLLAKUP R, TANTATHERDTAM R, UJJIN S, et al. Pineapple leaf fiber reinforced thermoplastic composites:Effects of fiber length and fiber content on their characteristics[J]. Journal of Applied Polymer Science, 2011, 119(4):1952-1960.
    [17]
    YEMELE M C N, KOUBAA A, CLOUTIER A, et al. Effect of bark fiber content and size on the mechanical properties of bark/HDPE composites[J]. Composites Part A:Applied Science and Manufacturing, 2010, 41(1):131-137.
    [18]
    聂孙建, 张效林, 丛龙康, 等. 界面改性对麦秸秆纤维/聚乙烯复合材料性能的影响[J]. 复合材料学报, 2018, 35(7):1783-1790.
    [19]
    翟苏宇, 关怀民, 童跃进, 等. 玻璃纤维对聚乳酸力学性能的影响[J]. 广州化工, 2014, 42(7):45-47.
    [20]
    公艳艳. 椰壳纤维/聚丁二酸丁二醇酯复合材料的研究[D]. 淄博:山东理工大学, 2016.
    [21]
    傅丹宁,黄彪彪,王占彬,等.利用废纸纤维制备羧甲基纤维素的工艺研究[J].纸和造纸,2018,37(5):16-22.
    [22]
    MARTIN A R, MARTINS M A. Studies on the thermal properties of sisal fiber and its constituents[J]. Thermochimica Acta,2010,506(1/2):14-19.
    [23]
    朱斐超, 韩建, 于斌, 等. 熔喷非织造用聚(3-羟基丁酸-3-羟基戊酸共聚酯)/聚乳酸双组分生物降解材料的可纺性能[J]. 纺织学报, 2016, 37(2):21-26.
    [24]
    AVENA A, BUNSELL A R. Effect of hydrostatic pressure on the water absorption of glass fibre-reinforced epoxy resin[J]. Composites, 1988, 19(5):355-357.
    [25]
    董琳琳, 黄故. 海水环境下玻璃纤维/聚酯基复合材料的性能研究[J]. 天津工业大学学报, 2007, 26(3):25-27.

Catalog

    Article views (4) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return