• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
ZHANG Qiang, SUN Shiqing, YANG Maosheng. High Stress Rolling Contact Fatigue Properties of 32Cr3MoVE Nitrided Bearing Steel[J]. Materials and Mechanical Engineering, 2019, 43(9): 38-42,77. DOI: 10.11973/jxgccl201909008
Citation: ZHANG Qiang, SUN Shiqing, YANG Maosheng. High Stress Rolling Contact Fatigue Properties of 32Cr3MoVE Nitrided Bearing Steel[J]. Materials and Mechanical Engineering, 2019, 43(9): 38-42,77. DOI: 10.11973/jxgccl201909008

High Stress Rolling Contact Fatigue Properties of 32Cr3MoVE Nitrided Bearing Steel

More Information
  • Received Date: July 30, 2018
  • Revised Date: August 06, 2019
  • Surface nitriding treatment was conducted on 32Cr3MoVE bearing steel prepared by double vacuum melting process. The rolling contact fatigue performance was studied under the high stress of 4.5 GPa by rolling contact fatigue testing machine, and the failure mechanism of rolling contact fatigue was analyzed. The results show that the effective nitriding layer depth of the test steel was 350 μm; the residual compressive stress in the nitriding layer increased and then decreased with the increase of distance from the surface, and had the largest value of 610 MPa at 300 μm distance from surface. The white vein structure distributing along the grain boundaries appeared in the nitriding layer. The rolling contact fatigue characteristic lifetime, rated fatigue lifetime and median fatigue lifetime were 3.040×108, 0.357×108, 2.083×108 cycles, respectively, calculated by two-parameter Weibull distribution. The rolling contact fatigue failure modes of the test steel included surface crack initiation and subsurface crack initiation, and the average diameter and depth of peeling pits in surface crack initiation sample were significantly larger than those of subsurface crack initiation sample. Surface crack initiation sample cracked along pits or scratches on the surface; the subsurface material properties of subsurface crack initiation sample degraded under the action of prolonged cyclic contact stress, resulting in crack initiation.
  • [1]
    ABIR B, GHATU S, NAGARAJ A. Evolution of subsurface plastic zone due to rolling contact fatigue of M-50NiL case hardened bearing steel[J]. International Journal of Fatigue, 2014, 59(2):102-113.
    [2]
    江志华, 李志明, 佟小军, 等. 深氮化硬化32Cr3MoVE钢组织性能研究[J]. 航空材料学报, 2010, 30(2):30-34.
    [3]
    JOHAN S. Subsurface rolling contact fatigue damage of railway wheels:A probabilistic analysis[J]. International Journal of Fatigue, 2012, 37(4):146-152.
    [4]
    WANG Y, HADFIELD M. A study of line defect fatigue failure of ceramic rolling elements in rolling contact[J]. Wear, 2002, 253(2):975-985.
    [5]
    KHAN Z A, HADFIELD M, TOBE S, et al. Residual stress variations during rolling contact fatigue of refrigerant lubricated silicon nitride bearing elements[J]. Ceramics International, 2006, 32(7):751-754.
    [6]
    WANG G H, QU S G, LAI F Q, et al. Rolling contact fatigue and wear properties of 0.1C-3Cr-2W-V nitrided steel[J]. International Journal of Fatigue, 2015, 77(8):105-114.
    [7]
    高玉魁. 表面形变处理对32Cr3MoVA钢渗氮层组织和性能的影响[J]. 材料热处理学报, 2005, 26(1):74-76.
    [8]
    RYCERZ P, OLVER A, KADIRIC A. Propagation of surface initiated rolling contact fatigue cracks in bearing steel[J]. International Journal of Fatigue, 2017, 97(4):29-38.
    [9]
    马艳红, 王永锋, 公平, 等. 航空发动机主轴承接触应力精确仿真计算方法[J]. 航空动力学报, 2017, 32(8):2001-2008.
    [10]
    GAO Y K. Influence of deep-nitriding and shot peening on rolling contact fatigue performance of 32Cr3MoVA steel[J]. Journal of Materials Engineering and Performance, 2008, 17(4):455-459.
    [11]
    郭军, 杨卯生, 卢德宏, 等. Cr4Mo4V轴承钢滚动接触疲劳和磨损性能研究[J]. 摩擦学学报, 2017, 37(2):155-166.
    [12]
    钱云鹏, 何庆复, 阎国臣. 影响接触疲劳性能的因素[J]. 机车车辆工艺, 2001(4):1-4.
    [13]
    徐鹤琴, 汪久根, 王庆九. 滚动轴承疲劳失效过程与寿命模型的研究[J]. 轴承, 2016(4):57-62.
    [14]
    JOHNSON K. Contact mechanics and the wear of metals[J]. Wear, 1995, 190(2): 162-170.
    [15]
    FORSTER N H, ROSADO L, OGDEN W P, et al. Rolling contact fatigue life and spall propagation characteristics of AISI M50, M50NiL, and AISI 52100, part Ⅲ: Metallurgical examination[J]. Tribology Transactions,2009,53(1):52-59.

Catalog

    Article views (6) PDF downloads (1) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return