Citation: | LI Yong, XU Hejun, BA Fahai, HE Beibei, LI Kai. Finite Element Simulation and High-temperature Creep Property of Hastelloy-X Superalloy Prepared by Selective Laser Melting[J]. Materials and Mechanical Engineering, 2019, 43(9): 60-67. DOI: 10.11973/jxgccl201909012 |
[1] |
GOKULDOSS P K, KOLLA S, ECKERT J. Additive manufacturing processes:Selective laser melting, electron beam melting and binder jetting - Selection guidelines[J]. Materials, 2017, 10:1-12.
|
[2] |
MA P, JIA Y, PRASHANTH K G, et al. Microstructure and phase formation in Al-20Si-5Fe-3Cu-1Mg synthesized by selective laser melting[J]. Journal of Alloys and Compounds, 2016, 657:430-435.
|
[3] |
YADROITSEV I, BERTRAND P, SMUROV I. Parametric analysis of the selective laser melting process[J]. Applied Surface Science, 2007, 253:8064-8069.
|
[4] |
赵志国,柏林,李黎,等. 激光选区熔化成形技术的发展现状及研究进展[J]. 航空制造技术, 2014, 463(19):46-49.
|
[5] |
中国航空材料手册委员会. 中国航空材料手册[M]. 北京:中国标准出版社, 2002:224-237.
|
[6] |
WANG F. Mechanical property study on rapid additive layer manufacture Hastelloy-X alloy by selective laser melting technology[J]. International Journal of Advanced Manufacturing Technology, 2012, 58:545-551.
|
[7] |
TOMUS D, JARVIS T, WU X, et al. Controlling the microstructure of Hastelloy-X components manufactured by selective laser melting[J]. Physics Procedia,2013,41:823-827.
|
[8] |
ROBERTS I A, WANG C J, ESTERLEIN R, et al. A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing[J]. International Journal of Machine Tools and Manufacture, 2009, 49:916-923.
|
[9] |
HUANG Y, YANG L J, DU X Z, et al. Finite element analysis of thermal behavior of metal powder during selective laser melting[J]. International Journal of Thermal Science, 2016, 104:146-157.
|
[10] |
文舒,董安平,陆燕玲,等. GH536高温合金选区激光熔化温度场和残余应力的有限元模拟[J]. 金属学报, 2018, 54(3):393-403.
|
[11] |
吴文恒,张亮,何贝贝,等. 选择性激光熔化增材制造工艺过程模拟研究现状[J]. 理化检验-物理分册, 2016, 52(10):693-697.
|
[12] |
LI Y, QI H, HOU H, et al. Effects of hot isostatic pressing on microstructure and mechanical properties of Hastelloy X samples produced by selective laser melting[C]//Second International Conference on Mechanics, Materials and Structural Engineering. France:Atlantis Press, 2017:31-37.
|
[13] |
侯慧鹏, 梁永朝, 何艳丽,等. 选区激光熔化Hastelloy-X合金组织演变及拉伸性能[J]. 中国激光, 2017, 44(2):1-6.
|
[14] |
廖文俊,樊恩想,付超. 激光选区熔化Hastelloy-X合金的显微组织与拉伸性能[J]. 机械工程材料, 2018, 42(7):16-27.
|
[15] |
姚化山,史玉升,章文献,等. 金属粉末选区激光熔化成形过程温度场模拟[J]. 应用激光, 2007,27(6):456-460.
|
[16] |
陈庆华. 激光与材料相互作用及热场模拟[M]. 昆明:云南科技出版社, 2001:13-30.
|
[17] |
TOLOCHKO N K, KHLOPKOV Y V, MOZZHAROV S E, et al. Absorptance of powder materials suitable for laser sintering[J]. Rapid Prototyping Journal,2000,6(3):155-160.
|
[18] |
严深平,张安峰,梁少端,等. 激光增材制造技术常用金属材料激光吸收率测量[J].航空制造技术,2017,536(17):97-100.
|
[19] |
FOROOZMEHR A, BADROSSAMAY M, FOROOZMEHR E, et al. Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder bed[J]. Materials and Design, 2016, 89:255-263.
|
[20] |
MILLS K C. Recommended values of thermophysical properties for selected commercial alloys[J]. Aircraft Engineering Aerospace Technology, 2002, 5:175-181.
|
[21] |
DONG L, MAKRADI A, AHZI S, et al. Three-dimensional transient finite element analysis of the selective laser sintering process[J]. Journal of Materials Processing Technology, 2009, 209(2):700-706.
|
[22] |
HUSSEIN A, HAO L, YAN C, et al. Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting[J]. Materials and Design, 2013, 52:638-647.
|
[23] |
HARRISON N J, TODD I, MUMTAZ K. Reduction of micro-cracking in nickel superalloys processed by selective laser melting:A fundamental alloy design approach[J]. Acta Materialia, 2015, 94:59-68.
|
[24] |
NI T, DONG J. Creep behaviors and mechanisms of Inconel718 and Allvac 718 plus[J]. Materials Science & Engineering:A, 2017, 700:406-415.
|
[25] |
陈云翔,严伟,胡平,等. T/P91钢在高应力条件下蠕变行为的CDM模型模拟[J]. 金属学报, 2011, 47(11):1372-1377.
|
[26] |
张俊善. 材料的高温变形与断裂[M]. 北京:科学出版社, 2010:72-89.
|