• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
CHENG Xiuquan, YAN Chang, CHENG Sizhu, XIA Qinxiang. Influence Rule of Process Parameters on Residual Stress Cave Induced by Laser Shock[J]. Materials and Mechanical Engineering, 2019, 43(11): 53-56,61. DOI: 10.11973/jxgccl201911012
Citation: CHENG Xiuquan, YAN Chang, CHENG Sizhu, XIA Qinxiang. Influence Rule of Process Parameters on Residual Stress Cave Induced by Laser Shock[J]. Materials and Mechanical Engineering, 2019, 43(11): 53-56,61. DOI: 10.11973/jxgccl201911012

Influence Rule of Process Parameters on Residual Stress Cave Induced by Laser Shock

More Information
  • Received Date: June 21, 2019
  • Revised Date: October 17, 2019
  • The concepts of relative cave depth, relative cave width and stress loss ratio of residual stress cave were introduced by establishment of the residual stress cave math model. The effect of shock energy (1.0-3.0 J), spot diameter (1.0-3.0 mm), shock number (1-5 times) and spot overlap ratio (30%-70%) on residual stress cave was quantitatively analyzed by finite element model verified by experiment. The results show that stress loss ratios caused by residual stress cave were all very small, which were all less than 3%; relative cave widths were all less than 20%; the variation range of relative cave depths was large, which was 0-70%, and relative cave depth was the main factor to affect the uniformity of surface residual stress. In order to improve the uniformity of surface residual stress, when the relative cave depth of single residual stress cave was more than 10%, the spot overlap method should be used to shock peening, and the distance between two neighbouring spot center should be equal to the opening radius of the residual stress cave.
  • [1]
    PEYRE P, FABBRO R, MERRIEN P, et al. Laser shock processing of aluminium alloys. Application to high cycle fatigue behavior[J]. Material Science and Engineering A: 1996, 210: 102-113.
    [2]
    ACHINTHA M, NOWELL D, FUFARI D, et al. Fatigue behaviour of geometric features subjected to laser shock peening: Experiments and modelling[J]. International Journal of Fatigue, 2014, 62:171-179.
    [3]
    马壮, 李应红, 任旭东, 等. 航空铝合金激光激波强化工艺[J]. 机械工程材料, 2007, 31(8): 32-34.
    [4]
    TRDAN U, SKARBA M, GRUMA J. Laser shock peening effect on the dislocation transitions and grain refinement of Al-Mg-Si alloy[J]. Materials Characterization, 2014,97:57-68.
    [5]
    BHAMARE S, RAMAKRISHNAN G, MANNAVA S R, et al. Simulation-based optimization of laser shock peening process for improved bending fatigue life of Ti-6Al-2Sn-4Zr-2Mo alloy[J]. Surface & Coatings Technology, 2013, 232:464-474.
    [6]
    贾凯翔, 张传伟, 聂祥樊. 激光冲击“残余应力洞”的参数影响[J]. 火力与指挥控制, 2014, 39(8): 1384-1388.
    [7]
    王学德, 周鑫, 王路成, 等. GH742合金激光冲击强化后的表面残余应力[J]. 机械工程材料, 2012, 36(3): 79-80.
    [8]
    姜银方, 来彦玲, 张磊, 等. 激光冲击材料表面“残余应力洞”形成规律与分析[J]. 中国激光,2010, 37(8):2073-2079.
    [9]
    王波, 陈东林, 周留成, 等. 激光冲击波加载金属材料中心压应力缺失效应[J].红外与激光工程, 2014, 43(11):3521-3526.
    [10]
    王学德,聂祥樊,臧顺来,等. 激光冲击强化“残余应力洞”的形成机制[J]. 强激光与粒子束,2014,26(11): 119003.
    [11]
    FABBRO R, PEYRE P, BERTHE L, et al. Physics and application of laser shock processing [J]. Laser Application, 1998, 10(6): 265-279.
    [12]
    FAIRAND B P, CLAUER A H.Laser generated of high-amplitude stress waves in materials[J]. Journal of Applied Physics, 1978, 50(3): 265-279.
    [13]
    程龙. 不同激光冲击工艺参数对40Cr钢表面应力应变影响的模拟试验研究[D].镇江:江苏大学, 2017.
    [14]
    樊玉杰. 激光微喷丸强化的压力模型及冲击效应研究[D]. 镇江:江苏大学, 2011.
    [15]
    花国然, 蒋苏州, 曹宇鹏, 等.激光冲击7050铝合金表面“残余应力洞”的模拟[J].金属热处理, 2017, 42(7): 154-157.
    [16]
    陈浩天, 曹宇鹏, 花国然, 等.激光冲击690高强钢表面残余应力工艺优化模拟[J]. 金属热处理, 2018, 43(10):206-209.
    [17]
    张兴权, 张永康, 顾永玉, 等.激光喷丸诱导的残余应力的有限元分析[J].塑性工程学报, 2008(4):188-193.
    [18]
    帅高鹏.基于在线修复的飞机受损件激光喷丸残余应力研究[D].广州:华南理工大学, 2017.
    [19]
    彭薇薇, 凌祥. 激光冲击残余应力场的有限元分析[J]. 航空材料学报,2006(6): 30-37.
    [20]
    刘贵杰, 杨胜瑞.激光冲击诱导的残余应力洞数值建模仿真分析[J].材料热处理学报, 2015, 36(10):241-247.
    [21]
    李兴成, 张永康, 周金宇, 等.激光冲击强化AZ31镁合金表面残余应力分析[J].激光技术, 2016, 40(1):5-10.
    [22]
    余天宇, 戴峰泽, 张永康, 等.平顶光束激光冲击2024铝合金诱导残余应力场的模拟与实验[J].中国激光,2012, 39(10):1993991.
    [23]
    段志勇.激光冲击波及激光冲击处理技术的研究[D].合肥:中国科学技术大学,2000.
    [24]
    薛彦庆, 周鑫, 李应红, 等.激光冲击强化“残余应力洞”测试验证及抑制方法研究[J].激光与光电子学进展, 2012, 49(12):121405.

Catalog

    Article views (4) PDF downloads (1) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return