Citation: | CHEN Yuqiang, ZHANG Hao, ZHANG Wentao, PAN Suping, LIU Wenhui, SONG Yufeng. Research Progress on Influence of Service Environment on Fatigue Damage Behavior of High Strength Aluminum Alloy[J]. Materials and Mechanical Engineering, 2020, 44(1): 1-7. DOI: 10.11973/jxgccl202001001 |
[1] |
黄啸, 黄颐, 刘建中. 先进铝锂合金层板疲劳裂纹扩展分层行为[J]. 航空材料学报, 2018, 38(4):130-136.
|
[2] |
YIN D, LIU H, CHEN Y, et al. Effect of grain size on fatigue-crack growth in 2524 aluminium alloy[J]. International Journal of Fatigue, 2016, 84:9-16.
|
[3] |
程凯. 面向CPCP要求的民机结构腐蚀控制方法研究[J]. 民用飞机设计与研究, 2008(3):19-22.
|
[4] |
PATANKAR M S, TAYLOR J C. MRM training, evaluation, and safety management[J]. The International Journal of Aviation Psychology, 2008, 18(1):61-71.
|
[5] |
施张兵. 新丝绸之路时期的中国高铁外交研究[J]. 广州大学学报(社会科学版), 2016, 15(9):70-76.
|
[6] |
SURYA R S. 印度尼西亚对气候变化脆弱性分析:以雅加达市为例[D]. 厦门:厦门大学, 2012.
|
[7] |
杨胜. 2E12铝合金服役环境下的损伤行为与耐损伤微观结构的研究[D]. 长沙:中南大学, 2008.
|
[8] |
赵汉卿. 低温真空环境下2A12合金疲劳行为研究[D]. 哈尔滨:哈尔滨工业大学, 2013.
|
[9] |
BURNJ T, GUPTA V K, AGNEW S R, et al. Effect of low temperature on fatigue crack formation and microstructure-scale propagation in legacy and modern Al-Zn-Mg-Cu alloys[J]. International Journal of Fatigue, 2013, 55(7):268-275.
|
[10] |
LIU M D, XIONG J J, LIU J Z, et al. Modified model for evaluating fatigue behaviors and lifetimes of notched aluminum-alloys at temperatures of 25℃ and -70℃[J]. International Journal of Fatigue, 2016, 93:122-132.
|
[11] |
BURNS J T, JONES J J, THOMPSON A D, et al.Fatigue crack propagation of aerospace aluminum alloy 7075-T651 in high altitude environments[J]. International Journal of Fatigue, 2017, 106:196-207.
|
[12] |
叶序彬, 胡本润, 林华强, 等. 温度对7N01-T4铝合金疲劳行为的影响[J]. 失效分析与预防, 2014, 9(6):347-351.
|
[13] |
王娟. 2A14合金疲劳行为研究[D]. 哈尔滨:哈尔滨工业大学, 2013.
|
[14] |
MAJCHROWICZ K, PAKIELA Z, GIZYNSKI M, et al. High-cycle fatigue strength of ultrafine-grained 5483 Al-Mg alloy at low and elevated temperature in comparison to conventional coarse-grained Al alloys[J]. International Journal of Fatigue, 2018,106:81-91.
|
[15] |
杨胜, 易丹青, 杨守杰, 等. 温度对2E12铝合金疲劳性能与断裂机制的影响[J]. 航空材料学报, 2007, 27(6):1-5.
|
[16] |
宋千光, 赵彬, 耿小亮, 等. 温度和应力比对航空铝合金疲劳裂纹扩展规律的影响及其机理[J]. 材料科学与工程学报, 2015, 3(2):157-162.
|
[17] |
DU F S, YAN L, DAI S L, et al. Study on fatigue performance of high strength aluminum alloy[J]. Journal of Aeronautical Materials, 2009, 29(1):96-100.
|
[18] |
HENAFF G, ODEMER G, BENOIT G, et al. Prediction of creep-fatigue crack growth rates in inert and active environments in an aluminium alloy[J]. International Journal of Fatigue, 2009, 31(11):1943-1951.
|
[19] |
SZUSTA J, SEWERYN A. Experimental study of the low-cycle fatigue life under multiaxial loading of aluminum alloy EN AW-2024-T3 at elevated temperatures[J]. International Journal of Fatigue, 2017, 96:28-42.
|
[20] |
王勇, 唐建国, 邓运来, 等. 时效状态对7020铝合金疲劳性能的影响[J]. 中南大学学报(自然科学版), 2018, 49(11):2684-2691.
|
[21] |
陈宇强, 潘素平, 刘文辉, 等. 析出相对Al-Cu-Mg合金蠕变行为的影响[J]. 中国有色金属学报, 2015, 25(4):900-909.
|
[22] |
HENAFF G, MENAN F, ODEMER G. Influence of corrosion and creep on intergranular fatigue crack path in 2XXX aluminium alloys[J]. Engineering Fracture Mechanics, 2010, 77(11):1975-1988.
|
[23] |
WANG J T, ZHANG Y K, CHEN J Y, et al. Effect of laser shock peening on the high-temperature fatigue performance of 7075 aluminum alloy[J]. Materials Science and Engineering:A, 2017, 704:459-468.
|
[24] |
MURAKAMI Y, MATSUOKA S. Effect of hydrogen on fatigue crack growth of metals[J]. Engineering Fracture Mechanics, 2010, 77(11):1926-1940.
|
[25] |
HALL M M. Effect of cyclic crack opening displacement rate on corrosion fatigue crack velocity and fracture mode transitions for Al-Zn-Mg-Cu alloys[J]. Corrosion Science, 2014, 81(2):132-143.
|
[26] |
SEIFI M, GHAMARIAN I, SAMIMI P, et al. Sensitization and remediation effects on environmentally assisted cracking of Al-Mg naval alloys[J]. Corrosion Science, 2018, 73(2):721-725.
|
[27] |
李矿, 熊峻江, 马少俊, 等. 油箱积水环境下航空铝合金2E12-T3和7050-T7451疲劳性能实验[J]. 航空材料学报, 2017, 37(1):65-72.
|
[28] |
VORIS H C, JAHN M T. Fatigue of aluminium alloy 2024-T351 in humid and dry air[J]. Journal of Materials Science, 1990, 25(11):4708-4711.
|
[29] |
鲍蕊, 张建宇, 费斌军. 潮湿空气环境对2024-T3铝合金疲劳性能的影响[J]. 材料研究学报, 2007, 21(5):547-550.
|
[30] |
LI H, ZHOU S, XU L, et al. The influence of humid environment on fatigue property of pre-corroded 7XXX aluminum alloy[J]. Advanced Materials Research, 2011, 314/315/316:1406-1410.
|
[31] |
ZHANG X C, XIE L Y, ZHOU S, et al. Influence of wet air on fatigue performance of pre-corroded aluminum alloy[J]. Failure Analysis & Prevention, 2015, 10(4):197-201.
|
[32] |
CHEN Y J, LIU C C, ZHOU J, et al. Multiaxial fatigue behaviors of 2024-T4 aluminum alloy under different corrosion conditions[J]. International Journal of Fatigue, 2017, 98:269-278.
|
[33] |
CHEN Y J, ZHOU J, LIU C C, et al. Effect of pre-deformation on the pre-corrosion multiaxial fatigue behaviors of 2024-T4 aluminum alloy[J]. International Journal of Fatigue, 2018, 108:35-46.
|
[34] |
HU P, MENG Q C, HU W P, et al. A continuum damage mechanics approach coupled with an improved pit evolution model for the corrosion fatigue of aluminum alloy[J]. Corrosion Science, 2016, 113:78-91.
|
[35] |
GAMBONI O C, MORETO J A, BONAZZZI L H C, et al. Effect of salt-water fog on fatigue crack nucleation of Al and Al-Li alloys[J]. Materials Research, 2014, 17(1):250-254.
|
[36] |
ARRABAL R, MINGO B, PARDO A, et al. Pitting corrosion of rheocast A356 aluminium alloy in 3.5wt.% NaCl solution[J]. Corrosion Science, 2013, 73(2):342-355.
|
[37] |
SANKARAN K K, PEREZ R, JATA K V. Effects of pitting corrosion on the fatigue behavior of aluminum alloy 7075-T6:Modeling and experimental studies[J]. Materials Science and Engineering:A, 2001, 297(1):223-229.
|
[38] |
周松, 谢里阳, 回丽, 等. 航空铝合金预腐蚀疲劳寿命退化规律[J]. 东北大学学报(自然科学版), 2016, 37(7):969-974.
|
[39] |
RODRIGUEZ J J S, HERNANDEZ F, GONZALEZ J, et al. The effect of environmental and meteorological variables on atmospheric corrosion of carbon steel, copper, zinc and aluminium in a limited geographic zone with different types of environment[J]. Corrosion Science, 2003, 45(4):799-815.
|
[40] |
李涛, 吴立凡, 李相前, 等. Cl-浓度对2A12铝合金电化学行为的影响[J]. 腐蚀与防护, 2011, 32(4):256-260.
|
[41] |
SHARMA M M, ZIEMIAN C W. Pitting and stress corrosion cracking susceptibility of nanostructured Al-Mg alloys in natural and artificial environments[J]. Journal of Materials Engineering and Performance,2008,17(6):870-878.
|
[42] |
LIU Y, JIN B, LU J. Mechanical properties and thermal stability of nanocrystallized pure aluminum produced by surface mechanical attrition treatment[J]. Materials Science and Engineering:A, 2015, 636:446-451.
|
[43] |
CHEMIN A E A, SACONI F, BOSE FILHO W W, et al. Effect of saline corrosion environment on fatigue crack growth of 7475-T7351 aluminum alloy under TWIST flight loading[J]. Engineering Fracture Mechanics, 2015, 141:274-290.
|
[44] |
HOCKAUF K, NIENDORF T, WAGNER S, et al. Cyclic behavior and microstructural stability of ultrafine-grained AA6060 under strain-controlled fatigue[J]. Procedia Engineering, 2010, 2(1):2199-2208.
|
[45] |
邓红华, 夏琴香, 程秀全, 等. 喷丸对预腐蚀后铝合金疲劳性能的影响[J]. 表面技术, 2016, 45(1):118-123.
|
[46] |
ZUPANC U, GRUMB J.Effect of pitting corrosion on fatigue performance of shot-peened aluminium alloy 7075-T651[J]. Journal of Materials Processing Technology, 2010, 210(9):1197-1202.
|
[47] |
GONZALEZ J, BAGHERIFARD S, GUAGLIANO M, et al. Influence of different shot peening treatments on surface state and fatigue behaviour of Al 6063 alloy[J]. Engineering Fracture Mechanics, 2017, 185:72-81.
|
[48] |
DU J, ZHANG Y Y, CHEN Q C, et al. Corrosion electrochemistry of aluminum alloy for avitation in acid salt spray environment[J]. Journal of Aeronautical Materials, 2017, 37(4):33-38.
|
[49] |
LARIGNON C, ALEXIS J, ANDRIEU E, et al. The contribution of hydrogen to the corrosion of 2024 aluminium alloy exposed to thermal and environmental cycling in chloride media[J]. Corrosion Science, 2013, 69(2):211-220.
|
[50] |
ALEXOPOULOS N D, CHARALAMPIDOU C, SKARVELIS P, et al. Synergy of corrosion-induced micro-cracking and hydrogen embrittlement on the structural integrity of aluminium alloy (Al-Cu-Mg) 2024[J]. Corrosion Science, 2017, 121:32-42.
|
[51] |
马正青, 黎文献, 王日初, 等. 铝合金阳极在碱性介质中的电化学性能[J]. 电源技术, 2002, 26(5):365-368.
|
[52] |
李振亚, 秦学, 余远彬, 等. 含镓、锡的铝合金在碱性溶液中的阳极行为[J]. 物理化学学报, 1999, 15(4):381-384.
|
[53] |
胡博, 王建朝, 刘影, 等. 7075型铝合金在含NaOH碱性NaCl溶液中的腐蚀行为[J].材料保护,2014,47(3):23-27.
|
[54] |
LV J, LUO H. Effect of surface burnishing on texture and corrosion behavior of 2024 aluminum alloy[J]. Surface and Coatings Technology, 2013, 235(22):513-520.
|
[55] |
YI L, RU J G, HUANG M, et al. Influence of hole cold expansion on microstructure and fatigue life of 2124 aluminum alloy[J]. Journal of Aeronautical Materials, 2016, 36(5):31-37.
|
[56] |
LIU Z, LI F, XIA P, et al. Mechanisms for goss-grains induced crack deflection and enhanced fatigue crack propagation resistance in fatigue stage II of an AA2524 alloy[J]. Materials Science and Engineering:A,2015,625:271-277.
|
[57] |
LI F, LIU Z, WU W, et al. Enhanced fatigue crack propagation resistance of Al-Cu-Mg alloy by intensifying Goss texture and refining Goss grains[J]. Materials Science and Engineering:A, 2017, 679:204-214.
|
[58] |
韩剑, 戴起勋, 赵玉涛, 等. 7075-T651铝合金疲劳特性研究[J]. 航空材料学报, 2010, 30(4):92-96.
|
[59] |
WANHILL R J H. Fractography of fatigue crack propagation in 2024-T3 and 7075-16 aluminum alloys in air and vacuum[J]. Metallurgical Transactions A, 1975, 6(8):1587-1596.
|
[60] |
杨冬. 7A09合金疲劳行为研究[D]. 哈尔滨:哈尔滨工业大学, 2014.
|
[61] |
VERKIN B L, GRINBERG N M. The effect of vacuum on the fatigue behaviour of metals and alloys[J]. Materials Science and Engineering, 1979, 41(2):149-181.
|
[62] |
蹇海根, 姜锋, 文康, 等. 不同应力下7B04铝合金的疲劳断口[J]. 中南大学学报(自然科学版), 2010, 41(1):132-137.
|
[63] |
陈宇强, 宋文炜, 潘素平, 等. T6I4和T6I6时效处理对7050铝合金疲劳性能的影响[J]. 中南大学学报(自然科学版), 2016, 47(10):3332-3340.
|
[64] |
汪莹, 姜锋, 路丽英, 等. 2219铝合金在不同加载应力下的疲劳断裂机制[J]. 轻合金加工技术, 2016, 44(9):26-31.
|
[65] |
DING X Q, HE G Q, CHEN C S. Study on the dislocation sub-structures of Al-Mg-Si fatigued under non-proportional loadings[J]. Journal of Materials Science, 2010, 45(15):4046-4053.
|
[66] |
MENAN F, HENAFF G. Influence of frequency and waveform on corrosion fatigue crack propagation in the 2024-T351 aluminium alloy in the S-L orientation[J]. Materials Science and Engineering:A, 2009, 519:70-76.
|
[67] |
MENG X, LIN Z, WANG F. Investigation on corrosion fatigue crack growth rate in 7075 aluminum alloy[J]. Materials & Design, 2013, 51(5):683-687.
|
[68] |
HOLPER B, MAYER H, VASUDEVAN A K, et al. Near threshold fatigue crack growth in aluminium alloys at low and ultrasonic frequency:Influences of specimen thickness, strain rate, slip behaviour and air humidity[J]. International Journal of Fatigue, 2003, 25(5):397-411.
|
[69] |
WAHAB M A, PARK J H, ALAM M S, et al. Effect of corrosion prevention compounds on fatigue life in 2024-T3 aluminum alloy[J]. Journal of Materials Processing Technology, 2006, 174(1/2/3):211-217.
|