• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
CHEN Yuqiang, ZHANG Hao, ZHANG Wentao, PAN Suping, LIU Wenhui, SONG Yufeng. Research Progress on Influence of Service Environment on Fatigue Damage Behavior of High Strength Aluminum Alloy[J]. Materials and Mechanical Engineering, 2020, 44(1): 1-7. DOI: 10.11973/jxgccl202001001
Citation: CHEN Yuqiang, ZHANG Hao, ZHANG Wentao, PAN Suping, LIU Wenhui, SONG Yufeng. Research Progress on Influence of Service Environment on Fatigue Damage Behavior of High Strength Aluminum Alloy[J]. Materials and Mechanical Engineering, 2020, 44(1): 1-7. DOI: 10.11973/jxgccl202001001

Research Progress on Influence of Service Environment on Fatigue Damage Behavior of High Strength Aluminum Alloy

More Information
  • Received Date: December 25, 2018
  • Revised Date: November 20, 2019
  • The research status of fatigue damage behavior of high strength aluminum alloys under different environments from the aspects of temperature, humidity, corrosion medium, gaseous medium, loading condition are reviewed, and the effect mechanisms of environment factors on fatigue damage behavior of high strength aluminum alloys are revealed. The problems and future development direction about the fatigue damage behavior research of high strength aluminum alloy are pointed out.
  • [1]
    黄啸, 黄颐, 刘建中. 先进铝锂合金层板疲劳裂纹扩展分层行为[J]. 航空材料学报, 2018, 38(4):130-136.
    [2]
    YIN D, LIU H, CHEN Y, et al. Effect of grain size on fatigue-crack growth in 2524 aluminium alloy[J]. International Journal of Fatigue, 2016, 84:9-16.
    [3]
    程凯. 面向CPCP要求的民机结构腐蚀控制方法研究[J]. 民用飞机设计与研究, 2008(3):19-22.
    [4]
    PATANKAR M S, TAYLOR J C. MRM training, evaluation, and safety management[J]. The International Journal of Aviation Psychology, 2008, 18(1):61-71.
    [5]
    施张兵. 新丝绸之路时期的中国高铁外交研究[J]. 广州大学学报(社会科学版), 2016, 15(9):70-76.
    [6]
    SURYA R S. 印度尼西亚对气候变化脆弱性分析:以雅加达市为例[D]. 厦门:厦门大学, 2012.
    [7]
    杨胜. 2E12铝合金服役环境下的损伤行为与耐损伤微观结构的研究[D]. 长沙:中南大学, 2008.
    [8]
    赵汉卿. 低温真空环境下2A12合金疲劳行为研究[D]. 哈尔滨:哈尔滨工业大学, 2013.
    [9]
    BURNJ T, GUPTA V K, AGNEW S R, et al. Effect of low temperature on fatigue crack formation and microstructure-scale propagation in legacy and modern Al-Zn-Mg-Cu alloys[J]. International Journal of Fatigue, 2013, 55(7):268-275.
    [10]
    LIU M D, XIONG J J, LIU J Z, et al. Modified model for evaluating fatigue behaviors and lifetimes of notched aluminum-alloys at temperatures of 25℃ and -70℃[J]. International Journal of Fatigue, 2016, 93:122-132.
    [11]
    BURNS J T, JONES J J, THOMPSON A D, et al.Fatigue crack propagation of aerospace aluminum alloy 7075-T651 in high altitude environments[J]. International Journal of Fatigue, 2017, 106:196-207.
    [12]
    叶序彬, 胡本润, 林华强, 等. 温度对7N01-T4铝合金疲劳行为的影响[J]. 失效分析与预防, 2014, 9(6):347-351.
    [13]
    王娟. 2A14合金疲劳行为研究[D]. 哈尔滨:哈尔滨工业大学, 2013.
    [14]
    MAJCHROWICZ K, PAKIELA Z, GIZYNSKI M, et al. High-cycle fatigue strength of ultrafine-grained 5483 Al-Mg alloy at low and elevated temperature in comparison to conventional coarse-grained Al alloys[J]. International Journal of Fatigue, 2018,106:81-91.
    [15]
    杨胜, 易丹青, 杨守杰, 等. 温度对2E12铝合金疲劳性能与断裂机制的影响[J]. 航空材料学报, 2007, 27(6):1-5.
    [16]
    宋千光, 赵彬, 耿小亮, 等. 温度和应力比对航空铝合金疲劳裂纹扩展规律的影响及其机理[J]. 材料科学与工程学报, 2015, 3(2):157-162.
    [17]
    DU F S, YAN L, DAI S L, et al. Study on fatigue performance of high strength aluminum alloy[J]. Journal of Aeronautical Materials, 2009, 29(1):96-100.
    [18]
    HENAFF G, ODEMER G, BENOIT G, et al. Prediction of creep-fatigue crack growth rates in inert and active environments in an aluminium alloy[J]. International Journal of Fatigue, 2009, 31(11):1943-1951.
    [19]
    SZUSTA J, SEWERYN A. Experimental study of the low-cycle fatigue life under multiaxial loading of aluminum alloy EN AW-2024-T3 at elevated temperatures[J]. International Journal of Fatigue, 2017, 96:28-42.
    [20]
    王勇, 唐建国, 邓运来, 等. 时效状态对7020铝合金疲劳性能的影响[J]. 中南大学学报(自然科学版), 2018, 49(11):2684-2691.
    [21]
    陈宇强, 潘素平, 刘文辉, 等. 析出相对Al-Cu-Mg合金蠕变行为的影响[J]. 中国有色金属学报, 2015, 25(4):900-909.
    [22]
    HENAFF G, MENAN F, ODEMER G. Influence of corrosion and creep on intergranular fatigue crack path in 2XXX aluminium alloys[J]. Engineering Fracture Mechanics, 2010, 77(11):1975-1988.
    [23]
    WANG J T, ZHANG Y K, CHEN J Y, et al. Effect of laser shock peening on the high-temperature fatigue performance of 7075 aluminum alloy[J]. Materials Science and Engineering:A, 2017, 704:459-468.
    [24]
    MURAKAMI Y, MATSUOKA S. Effect of hydrogen on fatigue crack growth of metals[J]. Engineering Fracture Mechanics, 2010, 77(11):1926-1940.
    [25]
    HALL M M. Effect of cyclic crack opening displacement rate on corrosion fatigue crack velocity and fracture mode transitions for Al-Zn-Mg-Cu alloys[J]. Corrosion Science, 2014, 81(2):132-143.
    [26]
    SEIFI M, GHAMARIAN I, SAMIMI P, et al. Sensitization and remediation effects on environmentally assisted cracking of Al-Mg naval alloys[J]. Corrosion Science, 2018, 73(2):721-725.
    [27]
    李矿, 熊峻江, 马少俊, 等. 油箱积水环境下航空铝合金2E12-T3和7050-T7451疲劳性能实验[J]. 航空材料学报, 2017, 37(1):65-72.
    [28]
    VORIS H C, JAHN M T. Fatigue of aluminium alloy 2024-T351 in humid and dry air[J]. Journal of Materials Science, 1990, 25(11):4708-4711.
    [29]
    鲍蕊, 张建宇, 费斌军. 潮湿空气环境对2024-T3铝合金疲劳性能的影响[J]. 材料研究学报, 2007, 21(5):547-550.
    [30]
    LI H, ZHOU S, XU L, et al. The influence of humid environment on fatigue property of pre-corroded 7XXX aluminum alloy[J]. Advanced Materials Research, 2011, 314/315/316:1406-1410.
    [31]
    ZHANG X C, XIE L Y, ZHOU S, et al. Influence of wet air on fatigue performance of pre-corroded aluminum alloy[J]. Failure Analysis & Prevention, 2015, 10(4):197-201.
    [32]
    CHEN Y J, LIU C C, ZHOU J, et al. Multiaxial fatigue behaviors of 2024-T4 aluminum alloy under different corrosion conditions[J]. International Journal of Fatigue, 2017, 98:269-278.
    [33]
    CHEN Y J, ZHOU J, LIU C C, et al. Effect of pre-deformation on the pre-corrosion multiaxial fatigue behaviors of 2024-T4 aluminum alloy[J]. International Journal of Fatigue, 2018, 108:35-46.
    [34]
    HU P, MENG Q C, HU W P, et al. A continuum damage mechanics approach coupled with an improved pit evolution model for the corrosion fatigue of aluminum alloy[J]. Corrosion Science, 2016, 113:78-91.
    [35]
    GAMBONI O C, MORETO J A, BONAZZZI L H C, et al. Effect of salt-water fog on fatigue crack nucleation of Al and Al-Li alloys[J]. Materials Research, 2014, 17(1):250-254.
    [36]
    ARRABAL R, MINGO B, PARDO A, et al. Pitting corrosion of rheocast A356 aluminium alloy in 3.5wt.% NaCl solution[J]. Corrosion Science, 2013, 73(2):342-355.
    [37]
    SANKARAN K K, PEREZ R, JATA K V. Effects of pitting corrosion on the fatigue behavior of aluminum alloy 7075-T6:Modeling and experimental studies[J]. Materials Science and Engineering:A, 2001, 297(1):223-229.
    [38]
    周松, 谢里阳, 回丽, 等. 航空铝合金预腐蚀疲劳寿命退化规律[J]. 东北大学学报(自然科学版), 2016, 37(7):969-974.
    [39]
    RODRIGUEZ J J S, HERNANDEZ F, GONZALEZ J, et al. The effect of environmental and meteorological variables on atmospheric corrosion of carbon steel, copper, zinc and aluminium in a limited geographic zone with different types of environment[J]. Corrosion Science, 2003, 45(4):799-815.
    [40]
    李涛, 吴立凡, 李相前, 等. Cl-浓度对2A12铝合金电化学行为的影响[J]. 腐蚀与防护, 2011, 32(4):256-260.
    [41]
    SHARMA M M, ZIEMIAN C W. Pitting and stress corrosion cracking susceptibility of nanostructured Al-Mg alloys in natural and artificial environments[J]. Journal of Materials Engineering and Performance,2008,17(6):870-878.
    [42]
    LIU Y, JIN B, LU J. Mechanical properties and thermal stability of nanocrystallized pure aluminum produced by surface mechanical attrition treatment[J]. Materials Science and Engineering:A, 2015, 636:446-451.
    [43]
    CHEMIN A E A, SACONI F, BOSE FILHO W W, et al. Effect of saline corrosion environment on fatigue crack growth of 7475-T7351 aluminum alloy under TWIST flight loading[J]. Engineering Fracture Mechanics, 2015, 141:274-290.
    [44]
    HOCKAUF K, NIENDORF T, WAGNER S, et al. Cyclic behavior and microstructural stability of ultrafine-grained AA6060 under strain-controlled fatigue[J]. Procedia Engineering, 2010, 2(1):2199-2208.
    [45]
    邓红华, 夏琴香, 程秀全, 等. 喷丸对预腐蚀后铝合金疲劳性能的影响[J]. 表面技术, 2016, 45(1):118-123.
    [46]
    ZUPANC U, GRUMB J.Effect of pitting corrosion on fatigue performance of shot-peened aluminium alloy 7075-T651[J]. Journal of Materials Processing Technology, 2010, 210(9):1197-1202.
    [47]
    GONZALEZ J, BAGHERIFARD S, GUAGLIANO M, et al. Influence of different shot peening treatments on surface state and fatigue behaviour of Al 6063 alloy[J]. Engineering Fracture Mechanics, 2017, 185:72-81.
    [48]
    DU J, ZHANG Y Y, CHEN Q C, et al. Corrosion electrochemistry of aluminum alloy for avitation in acid salt spray environment[J]. Journal of Aeronautical Materials, 2017, 37(4):33-38.
    [49]
    LARIGNON C, ALEXIS J, ANDRIEU E, et al. The contribution of hydrogen to the corrosion of 2024 aluminium alloy exposed to thermal and environmental cycling in chloride media[J]. Corrosion Science, 2013, 69(2):211-220.
    [50]
    ALEXOPOULOS N D, CHARALAMPIDOU C, SKARVELIS P, et al. Synergy of corrosion-induced micro-cracking and hydrogen embrittlement on the structural integrity of aluminium alloy (Al-Cu-Mg) 2024[J]. Corrosion Science, 2017, 121:32-42.
    [51]
    马正青, 黎文献, 王日初, 等. 铝合金阳极在碱性介质中的电化学性能[J]. 电源技术, 2002, 26(5):365-368.
    [52]
    李振亚, 秦学, 余远彬, 等. 含镓、锡的铝合金在碱性溶液中的阳极行为[J]. 物理化学学报, 1999, 15(4):381-384.
    [53]
    胡博, 王建朝, 刘影, 等. 7075型铝合金在含NaOH碱性NaCl溶液中的腐蚀行为[J].材料保护,2014,47(3):23-27.
    [54]
    LV J, LUO H. Effect of surface burnishing on texture and corrosion behavior of 2024 aluminum alloy[J]. Surface and Coatings Technology, 2013, 235(22):513-520.
    [55]
    YI L, RU J G, HUANG M, et al. Influence of hole cold expansion on microstructure and fatigue life of 2124 aluminum alloy[J]. Journal of Aeronautical Materials, 2016, 36(5):31-37.
    [56]
    LIU Z, LI F, XIA P, et al. Mechanisms for goss-grains induced crack deflection and enhanced fatigue crack propagation resistance in fatigue stage II of an AA2524 alloy[J]. Materials Science and Engineering:A,2015,625:271-277.
    [57]
    LI F, LIU Z, WU W, et al. Enhanced fatigue crack propagation resistance of Al-Cu-Mg alloy by intensifying Goss texture and refining Goss grains[J]. Materials Science and Engineering:A, 2017, 679:204-214.
    [58]
    韩剑, 戴起勋, 赵玉涛, 等. 7075-T651铝合金疲劳特性研究[J]. 航空材料学报, 2010, 30(4):92-96.
    [59]
    WANHILL R J H. Fractography of fatigue crack propagation in 2024-T3 and 7075-16 aluminum alloys in air and vacuum[J]. Metallurgical Transactions A, 1975, 6(8):1587-1596.
    [60]
    杨冬. 7A09合金疲劳行为研究[D]. 哈尔滨:哈尔滨工业大学, 2014.
    [61]
    VERKIN B L, GRINBERG N M. The effect of vacuum on the fatigue behaviour of metals and alloys[J]. Materials Science and Engineering, 1979, 41(2):149-181.
    [62]
    蹇海根, 姜锋, 文康, 等. 不同应力下7B04铝合金的疲劳断口[J]. 中南大学学报(自然科学版), 2010, 41(1):132-137.
    [63]
    陈宇强, 宋文炜, 潘素平, 等. T6I4和T6I6时效处理对7050铝合金疲劳性能的影响[J]. 中南大学学报(自然科学版), 2016, 47(10):3332-3340.
    [64]
    汪莹, 姜锋, 路丽英, 等. 2219铝合金在不同加载应力下的疲劳断裂机制[J]. 轻合金加工技术, 2016, 44(9):26-31.
    [65]
    DING X Q, HE G Q, CHEN C S. Study on the dislocation sub-structures of Al-Mg-Si fatigued under non-proportional loadings[J]. Journal of Materials Science, 2010, 45(15):4046-4053.
    [66]
    MENAN F, HENAFF G. Influence of frequency and waveform on corrosion fatigue crack propagation in the 2024-T351 aluminium alloy in the S-L orientation[J]. Materials Science and Engineering:A, 2009, 519:70-76.
    [67]
    MENG X, LIN Z, WANG F. Investigation on corrosion fatigue crack growth rate in 7075 aluminum alloy[J]. Materials & Design, 2013, 51(5):683-687.
    [68]
    HOLPER B, MAYER H, VASUDEVAN A K, et al. Near threshold fatigue crack growth in aluminium alloys at low and ultrasonic frequency:Influences of specimen thickness, strain rate, slip behaviour and air humidity[J]. International Journal of Fatigue, 2003, 25(5):397-411.
    [69]
    WAHAB M A, PARK J H, ALAM M S, et al. Effect of corrosion prevention compounds on fatigue life in 2024-T3 aluminum alloy[J]. Journal of Materials Processing Technology, 2006, 174(1/2/3):211-217.

Catalog

    Article views (4) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return