• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
LIU Shifeng, ZENG Jianmin. Effect of KOH Content on Structure and Bonding Strength of Red Mud Plasma Electrolytic Oxidation Composite Ceramic Coatings[J]. Materials and Mechanical Engineering, 2020, 44(1): 8-15. DOI: 10.11973/jxgccl202001002
Citation: LIU Shifeng, ZENG Jianmin. Effect of KOH Content on Structure and Bonding Strength of Red Mud Plasma Electrolytic Oxidation Composite Ceramic Coatings[J]. Materials and Mechanical Engineering, 2020, 44(1): 8-15. DOI: 10.11973/jxgccl202001002

Effect of KOH Content on Structure and Bonding Strength of Red Mud Plasma Electrolytic Oxidation Composite Ceramic Coatings

More Information
  • Received Date: November 26, 2018
  • Revised Date: November 06, 2019
  • Plasma electrolytic oxidation (PEO) of 5005 aluminum alloy was carried out in KOH-red mud electrolytes. Effects of KOH mass concentration (CKOH=1.0, 2.0, 3.0, 4.0, 5.0 g·L-1) on the critical arcing voltage of PEO and the thickness, phase composition, morphology and bonding strength of the ceramic coating were analyzed. The results show that the ceramic coatings prepared in electrolytes with different KOH content were mainly composed of γ-Al2O3 and α-Al2O3, but a small amout of CaCO3, SiO2 and Fe2O3 phases also appeared. When KOH content increased, the positive and negative critical arcing voltages of PEO decreased rapidly; the coating thickness showed a growth trend of "semi-parabolic" shape; the γ-Al2O3 content in the ceramic coating increased first, then decreased and then increased, the change trend of α-Al2O3 content was just the opposite, and the CaCO3, SiO2, Fe2O3 content increased first and then decreased; the surface porosity of the ceramic coating decreased first and then increased, the surface roughness kept increasing and the hardness and bonding strength increased first and then decreased.
  • [1]
    GABRIELLI F, FORCELLESE A, MEHTEDI M E, et al. Mechanical properties and formability of cold rolled friction stir welded sheets in AA5754 for automotive applications[J]. Procedia Engineering, 2017,183:245-250.
    [2]
    SEARLES J L, GOUMA P I, BUCHHEIT R G. Stress corrosion cracking of sensitized AA5083(Al-4.5Mg-1.0Mn)[J]. Metallurgical and Materials Transactions A, 2001, 32(11):2859-2867.
    [3]
    STOJADINOVI AC'U S. Plasma electrolytic oxidation of metals[J]. Journal of the Serbian Chemical Society, 2013, 78(5):713-716.
    [4]
    TU W, CHENG Y, WANG X, et al. Plasma electrolytic oxidation of AZ31 magnesium alloy in aluminate-tungstate electrolytes and the coating formation mechanism[J]. Journal of Alloys and Compounds, 2017, 725:199-216.
    [5]
    DUNLEAVY C S, GOLOSNOY I O, CURRAN J A, et al. Characterisation of discharge events during plasma electrolytic oxidation[J]. Surface and Coatings Technology, 2009, 203(22):3410-3419.
    [6]
    YEROKHIN A L, NIE X, LEYLAND A, et al. Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti-6Al-4V alloy[J]. Surface and Coatings Technology, 2000, 130(2/3):195-206.
    [7]
    BARIK R C, WHARTON J A, WOOD R J K, et al. Corrosion, erosion and erosion-corrosion performance of plasma electrolytic oxidation (PEO) deposited Al2O3 coatings[J]. Surface and Coatings Technology, 2005, 199(2/3):158-167.
    [8]
    LIU R, WU J, XUE W, et al. Discharge behaviors during plasma electrolytic oxidation on aluminum alloy[J]. Materials Chemistry and Physics, 2014, 148(1/2):284-292.
    [9]
    WHITE L, KOO Y, NERALLA S, et al. Enhanced mechanical properties and increased corrosion resistance of a biodegradable magnesium alloy by plasma electrolytic oxidation (PEO)[J]. Materials Science and Engineering:B, 2016, 208:39-46.
    [10]
    MOON S, JEONG Y. Generation mechanism of microdischarges during plasma electrolytic oxidation of Al in aqueous solutions[J]. Corrosion Science, 2009, 51(7):1506-1512.
    [11]
    ERFANIFAR E, ALIOFKHAZRAEI M, NABAVI H F, et al. Growth kinetics and morphology of plasma electrolytic oxidation coating on aluminum[J]. Materials Chemistry and Physics, 2017, 185:162-175.
    [12]
    DUAN H, YAN C, WANG F. Growth process of plasma electrolytic oxidation films formed on magnesium alloy AZ91D in silicate solution[J]. Electrochimica Acta, 2007, 52(15):5002-5009.
    [13]
    XUE W, SHI X, HUA M, et al. Preparation of anti-corrosion films by microarc oxidation on an Al-Si alloy[J]. Applied Surface Science, 2007, 253(14):6118-6124.
    [14]
    XIANG N, SONG R G, LI H, et al. Study on microstructure and electrochemical corrosion behavior of PEO coatings formed on aluminum alloy[J]. Journal of Materials Engineering and Performance, 2015, 24(12):5022-5031.
    [15]
    WANG P, LI J, GUO Y, et al. The formation mechanism of the composited ceramic coating with thermal protection feature on an Al-12Si piston alloy via a modified PEO process[J]. Journal of Alloys and Compounds, 2016, 682:357-365.
    [16]
    NIE X, MELETIS E I, JIANG J C, et al. Abrasive wear/corrosion properties and TEM analysis of Al2O3 coatings fabricated using plasma electrolysis[J]. Surface and Coatings Technology, 2002, 149(2/3):245-251.
    [17]
    王丽, 付文, 陈砺. 等离子体电解氧化技术及机理研究进展[J]. 电镀与涂饰, 2012, 31(4):48-52.
    [18]
    ONO S, MORONUKI S, MORI Y, et al. Effect of electrolyte concentration on the structure and corrosion resistance of anodic films formed on magnesium through plasma electrolytic oxidation[J]. Electrochimica Acta, 2017, 240:415-423.
    [19]
    MALYSHEV V. Mikrolichtbogen-oxidation:EIN neuartiges verfahren zur verfestigung von aluminiumoberflächen[J]. Metalloberflaeche, 1995, 49(8):606-608.
    [20]
    DOOLABI D S, EHTESHAMZADEH M, MIRHOSSEINI S M M. Effect of NaOH on the structure and corrosion performance of alumina and silica PEO coatings on aluminum[J]. Journal of Materials Engineering and Performance, 2012, 21(10):2195-2202.
    [21]
    LV G H, GU W C, CHEN H, et al. Microstructure and corrosion performance of oxide coatings on aluminium by plasma electrolytic oxidation in silicate and phosphate electrolytes[J]. Chinese Physics Letters, 2006, 23(12):3331-3333.
    [22]
    YEROKHIN A L, NIE X, LEYLAND A, et al. Plasma electrolysis for surface engineering[J]. Surface and Coatings Technology, 1999, 122(2/3):73-93.
    [23]
    杨建, 李元东, 马颖, 等. NaOH对铝合金A356微弧氧化膜形成及其耐蚀性的影响[J]. 中国表面工程, 2008, 21(5):49-53.
    [24]
    孙萍, 杨建. 铝合金A356微弧氧化电解液配方的优化[J]. 精密成形工程, 2012, 4(1):21-25.
    [25]
    吴士军. NaOH对铝合金微弧氧化膜特性的影响[J]. 中国腐蚀与防护学报, 2012, 32(6):520-524.
    [26]
    刘永珍. 电解液对ZAlSi12Cu2Mg1微弧氧化膜形成及其特性的影响[D]. 呼和浩特:内蒙古工业大学, 2007.
    [27]
    郝建民, 丁毅. 铝合金微弧氧化陶瓷层生长过程研究[J]. 电镀与精饰, 2005, 27(1):8-10.
    [28]
    JONI M S, FATTAH-ALHOSSEINI A. Effect of KOH concentration on the electrochemical behavior of coatings formed by pulsed DC micro-arc oxidation (MAO) on AZ31B Mg alloy[J]. Journal of Alloys and Compounds, 2016, 661:237-244.
    [29]
    LIU S F, ZENG J M. Effects of negative voltage on microstructure and corrosion resistance of red mud plasma electrolytic oxidation coatings[J]. Surface and Coatings Technology, 2018, 352:15-25.
    [30]
    VAKILIAZGHANDI M, FATTAHALHOSSEINI A, KESHAVARZ M. Effects of Al2O3 nano-particles on corrosion performance of plasma electrolytic oxidation coatings formed on 6061 aluminum alloy[J]. Journal of Materials Engineering and Performance, 2016, 25(12):5302-5313.
    [31]
    WANG P, WU T, XIAO Y T, et al. Effect of Al2O3 micro-powder additives on the properties of micro-arc oxidation coatings formed on 6061 aluminum alloy[J]. Journal of Materials Engineering and Performance, 2016, 25(9):3972-3976.
    [32]
    赵坚, 宋仁国, 李红霞, 等. 纳米添加剂对6063铝合金微弧氧化层组织与性能的影响[J]. 材料热处理学报, 2010, 31(4):125-128.
    [33]
    索相波, 马世宁, 邱骥, 等. 纳米SiO2复合处理对7A52铝合金微弧氧化陶瓷层孔隙率及性能的影响[J]. 航空材料学报, 2009, 29(6):66-69.
    [34]
    黄小威, 张晓燕, 闫洪达, 等. 纳米ZnO和纳米SiO2添加剂对铝合金微弧氧化膜层组织及性能的影响[J]. 热加工工艺, 2016, 45(4):160-161.
    [35]
    吴德凤, 雷源源, 张晓燕, 等. 纳米SiO2添加剂对铸造铝铜合金微弧氧化陶瓷层耐磨性的影响[J]. 表面技术, 2013, 42(5):42-44.
    [36]
    黄鑫, 张晓燕, 黄丹, 等. 纳米二氧化钛对铸造铝铜合金微弧氧化膜层性能的影响[J].电镀与涂饰,2014,33(19):831-834.
    [37]
    李振伟, 狄士春. 纳米TiO2微粒对2214铝合金微弧氧化膜微观结构及耐磨性能的影响[J]. 材料导报, 2018, 32(8):1294-1299.
    [38]
    张宇, 赵燕伟, 宋仁国. 纳米TiO2添加剂对ZL101A铝合金微弧氧化陶瓷涂层性能的影响[J]. 热加工工艺, 2017, 46(18):153-156.
    [39]
    刘万超, 张校申, 江文琛, 等. 拜耳法赤泥粒径分级预处理的研究[J]. 环境工程学报, 2011, 5(4):921-924.
    [40]
    CHVEDOV D, OSTAP S, LE T. Surface properties of red mud particles from potentiometric titration[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2001, 182(1/2/3):131-141.
    [41]
    郭威敏, 朱文凤, 王林江, 等. 平果铝拜耳法赤泥物相及热行为分析[J]. 武汉理工大学学报, 2013, 35(1):131-135.
    [42]
    JÖNSSON B, HOGMARK S. Hardness measurements of thin films[J]. Thin Solid Films, 1984, 114(3):257-269.
    [43]
    WANG L D, LI M, ZHANG T H, et al. Hardness measurement and evaluation of thin film on material surface[J]. Chinese Journal of Aeronautics, 2003, 16(1):52-58.
    [44]
    王虹斌, 方志刚, 蒋百灵. 微弧氧化技术及其在海洋环境中的应用[M]. 北京:国防工业出版社, 2010.
    [45]
    CHUNG F H. Quantitative interpretation of X-ray diffraction patterns of mixtures. I. Matrix-flushing method for quantitative multicomponent analysis[J]. Journal of Applied Crystallography, 1974, 7(6):519-525.
    [46]
    CHUNG F H. Quantitative interpretation of X-ray diffraction patterns of mixtures. II. Adiabatic principle of X-ray diffraction analysis of mixtures[J]. Journal of Applied Crystallography, 1974, 7(6):526-531.
    [47]
    XIE Y, HAWTHORNE H M. A model for compressive coating stresses in the scratch adhesion test[J]. Surface and Coatings Technology, 2001, 141(1):15-25.

Catalog

    Article views (7) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return