Citation: | LIU Shifeng, ZENG Jianmin. Effect of KOH Content on Structure and Bonding Strength of Red Mud Plasma Electrolytic Oxidation Composite Ceramic Coatings[J]. Materials and Mechanical Engineering, 2020, 44(1): 8-15. DOI: 10.11973/jxgccl202001002 |
[1] |
GABRIELLI F, FORCELLESE A, MEHTEDI M E, et al. Mechanical properties and formability of cold rolled friction stir welded sheets in AA5754 for automotive applications[J]. Procedia Engineering, 2017,183:245-250.
|
[2] |
SEARLES J L, GOUMA P I, BUCHHEIT R G. Stress corrosion cracking of sensitized AA5083(Al-4.5Mg-1.0Mn)[J]. Metallurgical and Materials Transactions A, 2001, 32(11):2859-2867.
|
[3] |
STOJADINOVI AC'U S. Plasma electrolytic oxidation of metals[J]. Journal of the Serbian Chemical Society, 2013, 78(5):713-716.
|
[4] |
TU W, CHENG Y, WANG X, et al. Plasma electrolytic oxidation of AZ31 magnesium alloy in aluminate-tungstate electrolytes and the coating formation mechanism[J]. Journal of Alloys and Compounds, 2017, 725:199-216.
|
[5] |
DUNLEAVY C S, GOLOSNOY I O, CURRAN J A, et al. Characterisation of discharge events during plasma electrolytic oxidation[J]. Surface and Coatings Technology, 2009, 203(22):3410-3419.
|
[6] |
YEROKHIN A L, NIE X, LEYLAND A, et al. Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti-6Al-4V alloy[J]. Surface and Coatings Technology, 2000, 130(2/3):195-206.
|
[7] |
BARIK R C, WHARTON J A, WOOD R J K, et al. Corrosion, erosion and erosion-corrosion performance of plasma electrolytic oxidation (PEO) deposited Al2O3 coatings[J]. Surface and Coatings Technology, 2005, 199(2/3):158-167.
|
[8] |
LIU R, WU J, XUE W, et al. Discharge behaviors during plasma electrolytic oxidation on aluminum alloy[J]. Materials Chemistry and Physics, 2014, 148(1/2):284-292.
|
[9] |
WHITE L, KOO Y, NERALLA S, et al. Enhanced mechanical properties and increased corrosion resistance of a biodegradable magnesium alloy by plasma electrolytic oxidation (PEO)[J]. Materials Science and Engineering:B, 2016, 208:39-46.
|
[10] |
MOON S, JEONG Y. Generation mechanism of microdischarges during plasma electrolytic oxidation of Al in aqueous solutions[J]. Corrosion Science, 2009, 51(7):1506-1512.
|
[11] |
ERFANIFAR E, ALIOFKHAZRAEI M, NABAVI H F, et al. Growth kinetics and morphology of plasma electrolytic oxidation coating on aluminum[J]. Materials Chemistry and Physics, 2017, 185:162-175.
|
[12] |
DUAN H, YAN C, WANG F. Growth process of plasma electrolytic oxidation films formed on magnesium alloy AZ91D in silicate solution[J]. Electrochimica Acta, 2007, 52(15):5002-5009.
|
[13] |
XUE W, SHI X, HUA M, et al. Preparation of anti-corrosion films by microarc oxidation on an Al-Si alloy[J]. Applied Surface Science, 2007, 253(14):6118-6124.
|
[14] |
XIANG N, SONG R G, LI H, et al. Study on microstructure and electrochemical corrosion behavior of PEO coatings formed on aluminum alloy[J]. Journal of Materials Engineering and Performance, 2015, 24(12):5022-5031.
|
[15] |
WANG P, LI J, GUO Y, et al. The formation mechanism of the composited ceramic coating with thermal protection feature on an Al-12Si piston alloy via a modified PEO process[J]. Journal of Alloys and Compounds, 2016, 682:357-365.
|
[16] |
NIE X, MELETIS E I, JIANG J C, et al. Abrasive wear/corrosion properties and TEM analysis of Al2O3 coatings fabricated using plasma electrolysis[J]. Surface and Coatings Technology, 2002, 149(2/3):245-251.
|
[17] |
王丽, 付文, 陈砺. 等离子体电解氧化技术及机理研究进展[J]. 电镀与涂饰, 2012, 31(4):48-52.
|
[18] |
ONO S, MORONUKI S, MORI Y, et al. Effect of electrolyte concentration on the structure and corrosion resistance of anodic films formed on magnesium through plasma electrolytic oxidation[J]. Electrochimica Acta, 2017, 240:415-423.
|
[19] |
MALYSHEV V. Mikrolichtbogen-oxidation:EIN neuartiges verfahren zur verfestigung von aluminiumoberflächen[J]. Metalloberflaeche, 1995, 49(8):606-608.
|
[20] |
DOOLABI D S, EHTESHAMZADEH M, MIRHOSSEINI S M M. Effect of NaOH on the structure and corrosion performance of alumina and silica PEO coatings on aluminum[J]. Journal of Materials Engineering and Performance, 2012, 21(10):2195-2202.
|
[21] |
LV G H, GU W C, CHEN H, et al. Microstructure and corrosion performance of oxide coatings on aluminium by plasma electrolytic oxidation in silicate and phosphate electrolytes[J]. Chinese Physics Letters, 2006, 23(12):3331-3333.
|
[22] |
YEROKHIN A L, NIE X, LEYLAND A, et al. Plasma electrolysis for surface engineering[J]. Surface and Coatings Technology, 1999, 122(2/3):73-93.
|
[23] |
杨建, 李元东, 马颖, 等. NaOH对铝合金A356微弧氧化膜形成及其耐蚀性的影响[J]. 中国表面工程, 2008, 21(5):49-53.
|
[24] |
孙萍, 杨建. 铝合金A356微弧氧化电解液配方的优化[J]. 精密成形工程, 2012, 4(1):21-25.
|
[25] |
吴士军. NaOH对铝合金微弧氧化膜特性的影响[J]. 中国腐蚀与防护学报, 2012, 32(6):520-524.
|
[26] |
刘永珍. 电解液对ZAlSi12Cu2Mg1微弧氧化膜形成及其特性的影响[D]. 呼和浩特:内蒙古工业大学, 2007.
|
[27] |
郝建民, 丁毅. 铝合金微弧氧化陶瓷层生长过程研究[J]. 电镀与精饰, 2005, 27(1):8-10.
|
[28] |
JONI M S, FATTAH-ALHOSSEINI A. Effect of KOH concentration on the electrochemical behavior of coatings formed by pulsed DC micro-arc oxidation (MAO) on AZ31B Mg alloy[J]. Journal of Alloys and Compounds, 2016, 661:237-244.
|
[29] |
LIU S F, ZENG J M. Effects of negative voltage on microstructure and corrosion resistance of red mud plasma electrolytic oxidation coatings[J]. Surface and Coatings Technology, 2018, 352:15-25.
|
[30] |
VAKILIAZGHANDI M, FATTAHALHOSSEINI A, KESHAVARZ M. Effects of Al2O3 nano-particles on corrosion performance of plasma electrolytic oxidation coatings formed on 6061 aluminum alloy[J]. Journal of Materials Engineering and Performance, 2016, 25(12):5302-5313.
|
[31] |
WANG P, WU T, XIAO Y T, et al. Effect of Al2O3 micro-powder additives on the properties of micro-arc oxidation coatings formed on 6061 aluminum alloy[J]. Journal of Materials Engineering and Performance, 2016, 25(9):3972-3976.
|
[32] |
赵坚, 宋仁国, 李红霞, 等. 纳米添加剂对6063铝合金微弧氧化层组织与性能的影响[J]. 材料热处理学报, 2010, 31(4):125-128.
|
[33] |
索相波, 马世宁, 邱骥, 等. 纳米SiO2复合处理对7A52铝合金微弧氧化陶瓷层孔隙率及性能的影响[J]. 航空材料学报, 2009, 29(6):66-69.
|
[34] |
黄小威, 张晓燕, 闫洪达, 等. 纳米ZnO和纳米SiO2添加剂对铝合金微弧氧化膜层组织及性能的影响[J]. 热加工工艺, 2016, 45(4):160-161.
|
[35] |
吴德凤, 雷源源, 张晓燕, 等. 纳米SiO2添加剂对铸造铝铜合金微弧氧化陶瓷层耐磨性的影响[J]. 表面技术, 2013, 42(5):42-44.
|
[36] |
黄鑫, 张晓燕, 黄丹, 等. 纳米二氧化钛对铸造铝铜合金微弧氧化膜层性能的影响[J].电镀与涂饰,2014,33(19):831-834.
|
[37] |
李振伟, 狄士春. 纳米TiO2微粒对2214铝合金微弧氧化膜微观结构及耐磨性能的影响[J]. 材料导报, 2018, 32(8):1294-1299.
|
[38] |
张宇, 赵燕伟, 宋仁国. 纳米TiO2添加剂对ZL101A铝合金微弧氧化陶瓷涂层性能的影响[J]. 热加工工艺, 2017, 46(18):153-156.
|
[39] |
刘万超, 张校申, 江文琛, 等. 拜耳法赤泥粒径分级预处理的研究[J]. 环境工程学报, 2011, 5(4):921-924.
|
[40] |
CHVEDOV D, OSTAP S, LE T. Surface properties of red mud particles from potentiometric titration[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2001, 182(1/2/3):131-141.
|
[41] |
郭威敏, 朱文凤, 王林江, 等. 平果铝拜耳法赤泥物相及热行为分析[J]. 武汉理工大学学报, 2013, 35(1):131-135.
|
[42] |
JÖNSSON B, HOGMARK S. Hardness measurements of thin films[J]. Thin Solid Films, 1984, 114(3):257-269.
|
[43] |
WANG L D, LI M, ZHANG T H, et al. Hardness measurement and evaluation of thin film on material surface[J]. Chinese Journal of Aeronautics, 2003, 16(1):52-58.
|
[44] |
王虹斌, 方志刚, 蒋百灵. 微弧氧化技术及其在海洋环境中的应用[M]. 北京:国防工业出版社, 2010.
|
[45] |
CHUNG F H. Quantitative interpretation of X-ray diffraction patterns of mixtures. I. Matrix-flushing method for quantitative multicomponent analysis[J]. Journal of Applied Crystallography, 1974, 7(6):519-525.
|
[46] |
CHUNG F H. Quantitative interpretation of X-ray diffraction patterns of mixtures. II. Adiabatic principle of X-ray diffraction analysis of mixtures[J]. Journal of Applied Crystallography, 1974, 7(6):526-531.
|
[47] |
XIE Y, HAWTHORNE H M. A model for compressive coating stresses in the scratch adhesion test[J]. Surface and Coatings Technology, 2001, 141(1):15-25.
|