• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
ZHANG Lan, ZHAO Hongjin, LI Shengci, YE Qing, LI Dehua. Effect of Crack Source Location on High Cycle Fatigue Life of 6005A Aluminum Alloy Extruded Profiles[J]. Materials and Mechanical Engineering, 2020, 44(1): 16-20,28. DOI: 10.11973/jxgccl202001003
Citation: ZHANG Lan, ZHAO Hongjin, LI Shengci, YE Qing, LI Dehua. Effect of Crack Source Location on High Cycle Fatigue Life of 6005A Aluminum Alloy Extruded Profiles[J]. Materials and Mechanical Engineering, 2020, 44(1): 16-20,28. DOI: 10.11973/jxgccl202001003

Effect of Crack Source Location on High Cycle Fatigue Life of 6005A Aluminum Alloy Extruded Profiles

More Information
  • Received Date: January 15, 2019
  • Revised Date: December 11, 2019
  • The effect of crack source location on high cycle fatigue life of 6005A-T6 aluminum alloy extruded profiles was studied by high cycle fatigue tests. The results show that the median fatigue strength of 6005A-T6 aluminum alloy extruded profiles was 164.5 MPa at the stress ratio of 0.1; the fatigue strength was relatively high, but the fatigue life distribution was relatively dispersal. Under the maximum stress of 200 MPa, the fatigue crack source region of samples with different fatigue lives was small; the fatigue crack propagation region consisted of fatigue strips and secondary cracks; the area of transient fracture region was large, and the region consisted of holes and dimples. The main reason for the difference in fatigue life under the same maximum stress was the difference location of fatigue crack source. Under the maximum stress of 200 MPa, the fatigue life of the sample with fatigue crack source in holes was the longest, which was one order of magnitude larger than that with fatigue crack source on oxide inclusions, and the fatigue life of the sample with the fatigue crack source in Al7(CrFe) second phase particles was between the two.
  • [1]
    武恭. 铝及铝合金材料手册[M].北京:科学出版社,1994:218.
    [2]
    MISHRA R S, MA Z Y.Friction stir welding and processing[J]. Materials Science & Engineering:R, 2010, 50(1):1-78.
    [3]
    SVENNINGSEN G, LEIN J E, BJØRGUM A, et al. Effect of low copper content and heat treatment on intergranular corrosion of model AlMgSi alloys[J]. Corrosion Science, 2006, 48(1):226-242.
    [4]
    SAVAIDIS G, SAVAIDIS A, TSAMASPHYROS G, et al. On size and technological effects in fatigue analysis and prediction of engineering materials and components[J]. International Journal of Mechanical Sciences, 2002, 44(3):521-543.
    [5]
    吴私, 王旭, 周吉学, 等. 铝合金疲劳性能的研究进展[J]. 金属世界, 2013(4):64-68.
    [6]
    李宏德. 冷胀提高6005铝合金疲劳寿命的机理[J]. 机械工程材料, 2007, 31(9):67-69.
    [7]
    季凯, 张静, 徐玉松. 新型高铜的6005A铝合金焊接接头疲劳性能[J]. 焊接学报, 2017, 38(1):95-98.
    [8]
    闫少华. 高速列车铝合金光纤激光-MIG复合焊接工艺与组织及性能[D]. 成都:西南交通大学, 2013.
    [9]
    汤运刚, 万里, 方喜风, 等. 振动时效时间对激光-MIG电弧复合焊铝合金焊接接头残余应力的影响[J]. 电焊机, 2015, 45(5):102-106.
    [10]
    刘新灵, 张峥, 陶春虎. 疲劳断口定量分析[M]. 北京: 国防工业出版社, 2010: 14.
    [11]
    FROUSTEY C, LATAILLADE J L. Influence of the microstructure of aluminium alloys on their residual impact properties after a fatigue loading program[J]. Materials Science & Engineering: A, 2009, 500(1/2): 155-163.
    [12]
    BORREGO L P, COSTA J M, SILVA S, et al. Microstructure dependent fatigue crack growth in aged hardened aluminium alloys[J]. International Journal of Fatigue, 2004, 26(12): 1321-1331.
    [13]
    崔华, 侯陇刚, 张济山. 合金化Cr优化含Fe过共晶Al-Si合金显微组织及其机制[J]. 稀有金属, 2010, 34(2), 178-185.
    [14]
    王从曾, 刘会亭. 材料性能学[M]. 北京:北京工业大学出版社,2004: 103.

Catalog

    Article views (4) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return