• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
YANG Huijing, CHEN Wei, CHEN Dong, ZHANG Guang. Shear Rheological Properties of Polyurethane-Based Magnetorheological Gel[J]. Materials and Mechanical Engineering, 2020, 44(1): 21-28. DOI: 10.11973/jxgccl202001004
Citation: YANG Huijing, CHEN Wei, CHEN Dong, ZHANG Guang. Shear Rheological Properties of Polyurethane-Based Magnetorheological Gel[J]. Materials and Mechanical Engineering, 2020, 44(1): 21-28. DOI: 10.11973/jxgccl202001004

Shear Rheological Properties of Polyurethane-Based Magnetorheological Gel

More Information
  • Received Date: December 23, 2018
  • Revised Date: November 11, 2019
  • Polyurethane-based magnetorheological gels (MRG) with different mass fractions of carbonyl iron powder (50%,70%,80%) were prepared. The static and dynamic shear rheological properties of the MRG with a wide shear stress range under different magnetic induction intensities, shear rates and strain amplitudes were studied, and Herschel-Bulkley constitutive model parameters were identified based on the test results. The results show that the shear stress of MRG with 80wt% carbonyl iron powder had the widest range, and megnetorheological effect was the most obvious. The yield shear stress of MRG with 80wt% carbon iron powder increased with the magnetic induction intensity; the kinetic viscosity at different magnetic induction intensities decreased with the increase of shear rate. The MRG was a non-Newtonian fluid with yield shear stress and shear thinning characteristics, and its rheological properties satisfied Herschel-Bulkley shear thinning model. The storage or loss modulus was greatly affected by the shear strain amplitude and magnetic induction intensity, but had a weak dependence on the frequency. The megnetorheological effect and linear viscoelastic critical strain amplitude both increased with the increase of magnetic induction intensity. The effect of magnetic induction intensity on normal stress was more significant than that of shear rate and shear strain amplitude.
  • [1]
    KIM H K, KIM H S, KIM Y K. Stiffness control of magnetorheological gels for adaptive tunable vibration absorber[J]. Smart Materials and Structures, 2017, 26(1):015016.
    [2]
    HU H S, WANG J, JIANG X Z, et al. Design and controllability analysis of a gun magnetorheological recoil damper[J]. Journal of Vibration & Shock, 2010, 29(2):184-188.
    [3]
    BUCCHI F, FORTE P, FRENDO F, et al. A magnetorheological clutch for efficient automotive auxiliary device actuation[J]. Frattura ed Integrità Strutturale, 2012, 7(23):62-74.
    [4]
    SHIGA T, OKADA A, KURAUCHI T. Magnetroviscoelastic behavior of composite gels[J]. Journal of Applied Polymer Science, 1995, 58(4):787-792.
    [5]
    AN H N, SUN B, PICKEN S J, et al. Long time response of soft magnetorheological gels[J]. The Journal of Physical Chemistry B, 2012, 116(15):4702-4711.
    [6]
    VENKATESWARA R P, MANIPRAKASH S, SRINIVASAN M, et al. Functional behavior of isotropic magnetorheological gels[J]. Smart Materials and Structures, 2010, 19(8):085019.
    [7]
    YANG P G, YU M, FU J. Ni-coated multi-walled carbon nanotubes enhanced the magnetorheological performance of magnetorheological gel[J]. Journal of Nanoparticle Research, 2016, 18(3):61.
    [8]
    SHIN B C, YOON J H, KIM Y K, et al. A feasibility study of designing a tunable vibration absorber using stiffness variable magnetorheological gel[C]//IEEE International Conference on Advanced Intelligent Mechatronics. Busan, South Korea:AIM, 2015.
    [9]
    HAJALILOU A, MAZLAN S A, ABBASI M, et al. Fabrication of spherical CoFe2O4 nanoparticles via sol-gel and hydrothermal methods and investigation of their magnetorheological characteristics[J]. RSC Advances, 2016, 6(92):89510-89522.
    [10]
    JU B X, YU M, FU J, et al. Magnetic field-dependent normal force of magnetorheological gel[J]. Industrial & Engineering Chemistry Research, 2013, 52(33):11583-11589.
    [11]
    AN H N, PICKEN S J, MENDES E. Direct observation of particle rearrangement during cyclic stress hardening of magnetorheological gels[J]. Soft Matter,2012,8(48):11995.
    [12]
    HU B, FUCHS A, HUSEYIN S, et al. Supramolecular magnetorheological polymer gels[J]. Journal of Applied Polymer Science, 2006, 100(3):2464-2479.
    [13]
    XU Y G, GONG X L, XUAN S H. Soft magnetorheological polymer gels with controllable rheological properties[J]. Smart Materials and Structures, 2013, 22(7):075029.
    [14]
    YANG P G, YU M, FU J, et al. The damping behavior of magnetorheological gel based on polyurethane matrix[J]. Polymer Composites, 2017, 38(7):1248-1258.
    [15]
    CHEN L, GONG X L, LI W H. Microstructures and viscoelastic properties of anisotropic magnetorheological elastomers[J]. Smart Materials and Structures, 2007,16(6):2645-2650.
    [16]
    XU Y G, GONG X L, XUAN S H, et al. A high-performance magnetorheological material:Preparation, characterization and magnetic-mechanic coupling properties[J]. Soft Matter, 2011, 7(11):5246.
    [17]
    MITSUMATA T, ABE N. Giant and reversible magnetorheology of carrageenan/iron oxide magnetic gels[J]. Smart Materials and Structures, 2011, 20(12):124003.
    [18]
    张广, 汪辉兴, 欧阳青, 等. 硅树脂基磁流变胶流变特性研究及Herschel-Bulkley模型参数识别[J]. 湖南大学学报(自然科学版), 2018(6):62-71.
    [19]
    WILSON M J, FUCHS A, GORDANINEJAD F. Development and characterization of magnetorheological polymer gels[J]. Journal of Applied Polymer Science, 2002, 84(14):2733-2742.
    [20]
    王芳芳, 廖昌荣, 周治江,等. 磁流变胶泥材料的磁控力学行为实验研究[J]. 功能材料, 2014, 45(23):23095-23100.
    [21]
    秦利军, 龚兴龙, 江万权,等. 铁粉含量对明胶基磁流变胶流变性能的影响[J]. 机械工程材料, 2010, 34(5):8-11.
    [22]
    刘术志, 余淼, 杨平安,等. 聚氨酯基磁流变胶磁控电阻特性研究[J]. 功能材料, 2016, 47(7):7066-7070.
    [23]
    MITSUMATA T, IKEDA K, GONG J P, et al. Magnetism and compressive modulus of magnetic fluid containing gels[J]. Journal of Applied Physics, 1999, 85(12):8451-8455.
    [24]
    WILSON M J, FUCHS A, GORDANINEJAD F. Development and characterization of magnetorheological polymer gels[J]. Journal of Applied Polymer Science, 2002, 84(14):2733-2742.
    [25]
    RANKIN P J, HORVATH A T, KLINGENBERG D J. Magnetorheology in viscoplastic media[J]. Rheologica Acta, 1999, 38(5):471-477.
    [26]
    FUCHS A, XIN M, GORDANINEJAD F, et al. Development and characterization of hydrocarbon polyol polyurethane and silicone magnetorheological polymeric gels[J]. Journal of Applied Polymer Science,2004,92(2):1176-1182.
    [27]
    WEI B, GONG X L, JIANG W Q. Influence of polyurethane properties on mechanical performances of magnetorheological elastomers[J]. Journal of Applied Polymer Science, 2010, 116(2):771-778.
    [28]
    ZHANG G, WANG H X, WANG J. Development and dynamic performance test of magnetorheological material for recoil of gun[J]. Applied Physics, 2018, 124(11):781.
    [29]
    YU M, JU B X, FU J, et al. Magnetoresistance characteristics of magnetorheological gel under a magnetic field[J]. Industrial & Engineering Chemistry Research, 2014, 53(12):4704-4710.

Catalog

    Article views (8) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return