Citation: | GUO Zhao, ZHOU Jianxin, SHEN Xu, YIN Yajun, JI Xiaoyuan, WANG Sheng. Numerical Simulation of Dendritic Growth Behavior in Solidification of Superalloy by an Improved Cellular Automaton Method[J]. Materials and Mechanical Engineering, 2020, 44(2): 65-72. DOI: 10.11973/jxgccl202002013 |
[1] |
李飞,陈晓燕,赵彦杰,等. DZ22B高温合金定向叶片粘砂形成机制与抑制措施[J]. 航空材料学报,2018,38(5):80-87.
|
[2] |
霍苗,刘林,黄太文,等. 镍基单晶高温合金小角度晶界的形成机制、影响因素与控制措施[J]. 材料导报,2018,32(19):3394-3404.
|
[3] |
高翔,燕群,杭超,等. 涡轮叶片高温振动特性试验技术研究[J]. 装备环境工程,2018,15(9):61-65.
|
[4] |
STEFANESCU D M. Length-scale in solidification analysis[M]//Science and Engineering of Casting Solidification. Cham:Springer International Publishing, 2015.
|
[5] |
RAPPAZ M,GANDIN A.Probabilistic modelling of microstructure formation in solidification processes[J].Acta Metallurgica et Materialia, 1993,41(2):345-360.
|
[6] |
DILTHEY U, PAVLIK V. Numerical simulation of dendrite morphology and grain growth with modified cellular automata[C]//Modeling of Casting, Welding and Advanced Solidification Processes VIII. San Diego,CA:Minerals, Metals & Naterials Society, 1998.
|
[7] |
NASTAC L. Simulation of microstructure evolution during solidification processes[D]. Tuscaloosa:University of Alabama, 1995.
|
[8] |
NASTAC L. Numerical modeling of solidification morphologies and segregation patterns in cast dendritic alloys[J].Acta Materialia, 1999,47(17):4253-4262.
|
[9] |
SHIN Y H, HONG C P. Modeling of dendritic growth with convection using a modified cellular automaton model with a diffuse interface[J].ISIJ International, 2002,42(4):359-367.
|
[10] |
BELTRAN-SANCHEZ L,STEFANESCU D M. Growth of solutal dendrites:A cellular automaton model and its quantitative capabilities[J]. Metallurgical and Materials Transactions A, 2003, 34(2):367-382.
|
[11] |
BELTRAN-SANCHEZ L, STEFANESCU D M.A quantitative dendrite growth model and analysis of stability concepts[J].Metallurgical and Materials Transactions A,2004,35(8):2471-2485.
|
[12] |
ZHU M,STEFANESCU D.Virtual front tracking model for the quantitative modeling of dendritic growth in solidification of alloys[J].Acta Materialia, 2007, 55(5):1741-1755.
|
[13] |
PAN S Y,ZHU M F.A three-dimensional sharp interface model for the quantitative simulation of solutal dendritic growth[J].Acta Materialia, 2010, 58(1):340-352.
|
[14] |
WANG W,LEE P D,MCLEAN M.A model of solidification microstructures in nickel-based superalloys:Predicting primary dendrite spacing selection[J].Acta Materialia, 2003, 51(10):2971-2987.
|
[15] |
XU Q Y,ZHANG H,QI X,et al.Multiscale modeling and simulation of directional solidification process of turbine blade casting with MCA method[J].Metallurgical and Materials Transactions B, 2014, 45(2):555-561.
|
[16] |
YUAN L, LEE P D.A new mechanism for freckle initiation based on microstructural level simulation[J].Acta Materialia, 2012, 60(12):4917-4926.
|
[17] |
ZHANG X F,ZHAO J Z,JIANG H X,et al.A three-dimensional cellular automaton model for dendritic growth in multi-component alloys[J].Acta Materialia,2012,60(5):2249-2257.
|
[18] |
王锦程,郭春文,李俊杰,等.定向凝固晶粒竞争生长的研究进展[J].金属学报,2018,54(5):657-668.
|
[19] |
马德新,王富,孙洪元,等.高温合金单晶铸件中杂晶缺陷的试验研究[J].铸造,2019,68(6):567-573.
|