• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
LIU Wenjin, YANG Weitao, YANG Qi, ZHAN Ke. Effect of Grain Size on Quasi-static Mechanical Properties of Low StackingFault Energy Fe-Mn-Si-Al Austenitic Alloy Steel[J]. Materials and Mechanical Engineering, 2020, 44(8): 10-16. DOI: 10.11973/jxgccl202008003
Citation: LIU Wenjin, YANG Weitao, YANG Qi, ZHAN Ke. Effect of Grain Size on Quasi-static Mechanical Properties of Low StackingFault Energy Fe-Mn-Si-Al Austenitic Alloy Steel[J]. Materials and Mechanical Engineering, 2020, 44(8): 10-16. DOI: 10.11973/jxgccl202008003

Effect of Grain Size on Quasi-static Mechanical Properties of Low StackingFault Energy Fe-Mn-Si-Al Austenitic Alloy Steel

More Information
  • Received Date: April 30, 2020
  • Revised Date: June 29, 2020
  • The cold rolled Fe-29.8Mn-5.0Si-1.7Al austenitic steel with low stacking fault energy was annealed at different temperatures (700,730,800,900,1 000,1 100,1 200 ℃). The influence of original austenite grain size on quasic-static mechanical properties and phase transformation behavior during deformation of the steel was studied. With the annealing temperature (above 730 ℃) increasing, obvious static recrystallization occurred on the alloy steel, the grain size increased, and the microstructure was single austenite. Recrystallized annealed alloy steel underwent ε-martensitic transformation during tensile deformation, the fine-grained structure (austenite grain size was less than 21 μm) was conducive to the alloy steel to obtain high yield strength and high tensile strength, and the coarse-grained structure (austenite grain size was greater than 90 μm) was beneficial to improve the plasticity, because of evenly distributed and intersecting multiple variants ε-martensite formed in coarse austenite grains.
  • [1]
    KOYAMA M,MURAKAMI M,OGAWA K,et al.Influence of Al on shape memory effect and twinning induced plasticity of Fe-Mn-Si-Al system alloy[J].Materials Transactions, 2007,48(10):2729-2734.
    [2]
    LI H J,DUNNE D,KENNON N.Factors influencing shape memory effect and phase transformation behaviour of Fe-Mn-Si based shape memory alloys[J].Materials Science and Engineering:A, 1999,273/274/275:517-523.
    [3]
    SHAO C W,ZHANG P,LIU R,et al.Low-cycle and extremely-low-cycle fatigue behaviors of high-Mn austenitic TRIP/TWIP alloys:Property evaluation,damage mechanisms and life prediction[J].Acta Materialia, 2016,103:781-795.
    [4]
    SHAO C W,ZHANG P,ZHU Y K,et al.Improvement of low-cycle fatigue resistance in TWIP steel by regulating the grain size and distribution[J].Acta Materialia, 2017,134:128-142.
    [5]
    NIKULIN I,SAWAGUCHI T,TSUZAKI K.Low-cycle fatigue properties of the Fe-30Mn-( 6-x)Si-xAl TRIP/TWIP alloys[C]//Proceedings of the 8th Pacific Rim International Congress on Advanced Materials and Processing. Cham: Springer International Publishing, 2013: 665-671.
    [6]
    ALLAIN S,CHATEAU J P,BOUAZIZ O,et al.Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys[J].Materials Science and Engineering:A, 2004,387/388/389:158-162.
    [7]
    代永娟,唐荻,米振莉,等.锰元素对TWIP钢层错能和变形机制的影响[J].材料工程,2009,37(7):39-42.
    [8]
    GUTIERREZ-URRUTIA I,RAABE D.Grain size effect on strain hardening in twinning-induced plasticity steels[J].Scripta Materialia, 2012,66(12):992-996.
    [9]
    KIRINDI T,DIKICI M.Microstructural analysis of thermally induced and deformation induced martensitic transformations in Fe-12.5wt.% Mn-5.5wt.% Si-9wt.% Cr-3.5wt.% Ni alloy[J].Journal of Alloys and Compounds, 2006,407(1/2):157-162.
    [10]
    LI L,HSU(XU Z Y) T Y.Gibbs free energy evaluation of the fcc(γ) and hcp(ε) phases in Fe-Mn-Si alloys[J].Calphad, 1997,21(3):443-448.
    [11]
    CURTZE S,KUOKKALA V T,OIKARI A,et al.Thermodynamic modeling of the stacking fault energy of austenitic steels[J].Acta Materialia, 2011,59(3):1068-1076.
    [12]
    DINSDALE A T.SGTE data for pure elements[J].Calphad, 1991,15(4):317-425.
    [13]
    DUMAY A,CHATEAU J P,ALLAIN S,et al.Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel[J].Materials Science and Engineering:A, 2008,483/484:184-187.
    [14]
    TAKAKI S,FURUYA T,TOKUNAGA Y.Effect of Si and Al additions on the low temperature toughness and fracture mode of Fe-27Mn alloys[J].ISIJ International, 1990,30(8):632-638.
    [15]
    GALINDO-NAVA E I,RIVERA-DÍAZ-DEL-CASTILLO P E J.Understanding martensite and twin formation in austenitic steels:A model describing TRIP and TWIP effects[J].Acta Materialia, 2017,128:120-134.
    [16]
    DE COOMAN B C,KWON O,CHIN K G.State-of-the-knowledge on TWIP steel[J].Materials Science and Technology, 2012,28(5):513-527.
    [17]
    张维娜, 刘振宇, 王国栋. 高锰TRIP钢的形变诱导马氏体相变及加工硬化行为[J]. 金属学报, 2010, 46(10): 1230-1236.
    [18]
    丁桦,杨平.高锰TRIP/TWIP钢变形行为的研究进展[J].材料与冶金学报,2010,9(4):265-272.
    [19]
    NIKULIN I,SAWAGUCHI T,OGAWA K,et al.Effect of γ to ε martensitic transformation on low-cycle fatigue behaviour and fatigue microstructure of Fe-15Mn-10Cr-8Ni-xSi austenitic alloys[J].Acta Materialia, 2016,105:207-218.
    [20]
    NAKATSU H,TAKAKI S.Effect of austenite grain size in Fe-Mn alloys on ε martensitic transformation and their mechanical properties[J].Journal of the Japan Institute of Metals and Materials, 1996,60(2):141-148.
    [21]
    KOYAMA M,LEE T,LEE C S,et al.Grain refinement effect on cryogenic tensile ductility in a Fe-Mn-C twinning-induced plasticity steel[J].Materials & Design, 2013,49:234-241.
    [22]
    金学军, 金明江, 耿永红. 铁基形状记忆合金马氏体相变研究进展[J]. 中国材料进展, 2011, 30(9): 32-41.
    [23]
    NAKATSU H,MIYATA T,TAKAKI S.Effect of austenite grain size on the deformation induced γ→ε martensitic transformation and mechanical properties in an Fe-27 mass%Mn alloy[J].Journal of the Japan Institute of Metals and Materials, 1996,60(10):936-943.
    [24]
    NAKATSU H,TAKAKI S,TOKUNAGA Y.Effect of austenite grain size on ε martensitic transformation in Fe-15 mass%Mn alloy[J].Journal of the Japan Institute of Metals and Materials, 1993,57(8):858-863.
    [25]
    YOO J D,PARK K T.Microband-induced plasticity in a high Mn-Al-C light steel[J].Materials Science and Engineering:A, 2008,496(1/2):417-424.

Catalog

    Article views (4) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return