• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
QIU Yu, YUAN Fei, ZENG Yuansong, MENG Qiang, LUO Rui, DONG Jihong, ZHAO Huaxia. Hot Deformation Behavior and Hot Processing Maps of 4Cr5MoSiV1 HotWorking Die Steel[J]. Materials and Mechanical Engineering, 2021, 45(2): 71-77. DOI: 10.11973/jxgccl202102013
Citation: QIU Yu, YUAN Fei, ZENG Yuansong, MENG Qiang, LUO Rui, DONG Jihong, ZHAO Huaxia. Hot Deformation Behavior and Hot Processing Maps of 4Cr5MoSiV1 HotWorking Die Steel[J]. Materials and Mechanical Engineering, 2021, 45(2): 71-77. DOI: 10.11973/jxgccl202102013

Hot Deformation Behavior and Hot Processing Maps of 4Cr5MoSiV1 HotWorking Die Steel

More Information
  • Received Date: January 15, 2020
  • Revised Date: November 05, 2020
  • Single-pass isothermal compression tests were carried out on 4Cr5MoSiV1 hot working die steel by Gleeble-3500 thermal simulator. The hot deformation behavior of the steel at deformation temperatures of 750-1 050 ℃ and strain rates of 0.001-0.1 s-1 was studied, and the microstructures after deformation were observed. On the basis of true stress-true strain curves obtained from the tests, the Arrhenius high-temperature constitutive model at true strain of 0.3 was established. The hot processing maps were drawn by the dynamic material model to obtain the reasonable hot processing window of the steel. The results show that the deformation resistance of 4Cr5MoSiV1 steel decreased significantly with increasing deformation temperature or decreasing strain rate. The hot deformation activation energy of 4Cr5MoSiV1 steel was 594.52 kJ·mol-1. Within the range of test parameters, the reasonable hot processing window of 4Cr5MoSiV1 steel was at a deformation temperature of 1 050 ℃ and strain rates of 0.001-0.01 s-1; at this time the carbide was fine and dispersed, and the strengthening effect of the second phase was significant.
  • [1]
    潘晓华, 朱祖昌. H13热作模具钢的化学成分及其改进和发展的研究[J]. 模具制造, 2006(4):78-85.

    PAN X H, ZHU Z C. The study of the chemical composition and improvement and development for the H13 hot work die & mold steel[J]. Die & Mould Manufacture, 2006(4):78-85.
    [2]
    胡瑞泽. 基于塑性变形机制的H13钢切削变质层显微组织演化[D]. 济南:山东大学, 2019.

    HU R Z. Microstructure evolution of cutting metamorphic layer of H13 steel based on plastic deformation mechanism[D]. Jinan:Shandong University, 2019.
    [3]
    王鹏, 张杰江, 胡亚民. H13钢的应用现状[J]. 模具制造, 2007(12):1-7.

    WANG P, ZHANG J J, HU Y M. The application of H13 steel[J]. Die & Mould Manufacture, 2007(12):1-7.
    [4]
    左鹏鹏, 吴晓春, 曾艳, 等. 基于应变控制的4Cr5MoSiV1热作模具钢热机械疲劳行为[J]. 工程科学学报, 2018, 40(1):76-83.

    ZUO P P, WU X C, ZENG Y, et al. Strain-controlled thermal-mechanical fatigue behavior of 4Cr5MoSiV1 hot work die Steel[J]. Chinese Journal of Engineering, 2018, 40(1):76-83.
    [5]
    曹光明. H13模具钢的热加工工艺研究[J]. 潍坊学院学报, 2004, 4(6):52-56.

    CAO G M. Research on heat machining technics applied in H13 die steel[J]. Journal of Weifang University, 2004, 4(6):52-56.
    [6]
    闵永安. 热作模具钢(H13型)表面处理及其热疲劳、热熔损性能研究[D]. 上海:上海大学, 2005.

    MIN Y A. Study on the surface treatment process of H13 type hot work steel and its subsequent thermal fatigue and erosion behaviors[D]. Shanghai:Shanghai University, 2005.
    [7]
    王荣, 闵永安, 吴晓春. H13钢经不同表面处理后的静态抗铝热熔损性能比较[J].金属热处理,2003,28(12):5-8.

    WANG R, MIN Y A, WU X C. Comparison of static anti-melting-loss ability of H13 steel with different surface treatment[J]. Heat Treatment of Metals,2003,28(12):5-8.
    [8]
    揭晓华, 董小虹, 黄拿灿. H13钢碳、氮、氧、硫、硼五元共渗层的性能研究[J]. 金属热处理, 2002, 27(7):21-23.

    JIE X H, DONG X H, HUANG N C. The properties of H13 steel treated by C-N-O-S-B multi-elements penetrating[J]. Heat Treatment of Metals, 2002, 27(7):21-23.
    [9]
    冯弘, 王耀武, 田林海, 等. H13钢表面电火花沉积钼涂层的摩擦磨损特性研究[J]. 热加工工艺, 2010, 39(4):96-98.

    FENG H, WANG Y W, TIAN L H, et al. Study on tribological behaviors of molybdenum coating on H13 steel surface by electrospark deposition[J]. Hot Working Technology, 2010, 39(4):96-98.
    [10]
    田玉新. 热处理工艺对H13钢热疲劳性能的影响[J]. 热处理, 2018, 33(6):37-43.

    TIAN Y X. Effect of heat treatment processes on thermal fatigue behavior of H13 steel[J]. Heat Treatment, 2018, 33(6):37-43.
    [11]
    黄春峰. 新型热作模具钢H13的热加工工艺研究[J]. 锻压技术, 1995, 20(2):8-13.

    HUANG C F. New hot working die steel H13 hot processing process research[J]. Forging & Stamping Technology, 1995, 20(2):8-13.
    [12]
    权国政, 刘克威, 王凤彪, 等. 7075铝合金热压缩动态软化行为的本构模型[J]. 机械工程材料, 2010, 34(10):82-86.

    QUAN G Z, LIU K W, WANG F B, et al. Constitutive model of dynamic softening behavior of 7075 aluminum alloy during hot compression[J]. Materials For Mechanical Engineering, 2010, 34(10):82-86.
    [13]
    罗锐, 程晓农, 徐桂芳, 等. 新型Fe-20Cr-30Ni-0.6Nb-2Al-Mo合金的热变形行为及本构模型[J]. 稀有金属, 2017, 41(2):132-139.

    LUO R, CHENG X N, XU G F, et al. Constitutive modeling for elevated temperature flow behavior of Fe-20Cr-30Ni-0.6Nb-2Al-Mo alloy[J]. Chinese Journal of Rare Metals, 2017, 41(2):132-139.
    [14]
    彭鸿博, 张宏建. 金属材料本构模型的研究进展[J]. 机械工程材料, 2012, 36(3):5-10.

    PENG H B, ZHANG H J. Research development of the constitutive models of metal materials[J]. Materials for Mechanical Engineering, 2012, 36(3):5-10.
    [15]
    李红英, 巫荣海, 魏冬冬, 等. T23钢的热变形行为[J]. 材料热处理学报, 2013, 34(1):96-101.

    LI H Y, WU R H, WEI D D, et al. Thermal deformation behavior of T23 steel[J]. Transactions of Materials and Heat Treatment, 2013, 34(1):96-101.
    [16]
    班宜杰, 张毅, 田保红, 等. Cu-0.8Cr-0.3Zr-0.2Mg合金热变形行为及热加工图[J]. 材料热处理学报, 2019, 40(9):44-49.

    BAN Y J, ZHANG Y, TIAN B H, et al. Hot deformation behavior and hot processing map of Cu-0.8Cr-0.3Zr-0.2Mg alloy[J]. Transactions of Materials and Heat Treatment, 2019, 40(9):44-49.
    [17]
    于雪梅. NiTi形状记忆合金热变形行为及变形机理的研究[D]. 辽阳:沈阳工业大学, 2019.

    YU X M. Study on hot deformation behavior and deformation mechanism of NiTi shape memory alloys[D].Liaoyang:Shenyang University of Technology, 2019.
    [18]
    周敬恩. 模具材料选用, 热处理与使用寿命[J]. 金属热处理, 1999, 24(5):1-9.

    ZHOU J E. Selection and heat treatment of die materials and service life of dies[J]. Heat Treatment of Metals, 1999, 24(5):1-9.
    [19]
    PRASAD Y V R K, GEGEL H L, DORAIVELU S M, et al. Modeling of dynamic material behavior in hot deformation:Forging of Ti-6242[J]. Metallurgical Transactions A, 1984, 15(10):1883-1892.
    [20]
    韩亚辉, 李长生, 任津毅, 等. 正火温度对H13热作模具钢组织性能的影响[J]. 机械工程材料, 2020, 44(增刊2):42-45.

    HAN Y H, LI C S, REN J Y, et al. Effect of normalizing temperature on microstructure and performance of H13 hot-working die steel[J]. Materials for Mechanical Engineering, 2020, 44(S2):42-45.
    [21]
    罗锐, 程晓农, 郑琦, 等.新型含铝奥氏体耐热合金Fe-20Cr-30Ni-0.6Nb-2Al-Mo的动态再结晶行为[J]. 材料导报, 2017, 31(18):136-140.

    LUO R, CHENG X N, ZHENG Q, et al. Dynamic recrystallization behavior of an alumina-forming austenitic alloy Fe-20Cr-30Ni-0.6Nb-2Al-Mo[J].Materials Review, 2017, 31(18):136-140.
    [22]
    罗锐. 新型奥氏体耐热合金的设计、制备及其热变形行为与机理研究[D]. 镇江:江苏大学, 2016. LUO R. The design and fabrication of a new austenitic heat-resisting alloy, and its workability and deformation mechanism[D]. Zhenjiang:Jiangsu University, 2016.
    [23]
    李腾, 吴晓东, 唐彬袁, 等. HG700汽车大梁钢的热变形行为及流变应力本构模型的建立[J]. 机械工程材料, 2019, 43(12):67-70.

    LI T, WU X D, TANG B Y, et al. Hot deformation behavior and establishment of flow stress constitutive model of HG700 automobile beam steel[J]. Materials for Mechanical Engineering, 2019, 43(12):67-70.
    [24]
    程晓农, 朱晶晶, 罗锐, 等. 新型CHDG-A06奥氏体不锈钢的热变形行为[J]. 机械工程材料, 2017, 41(3):98-102.

    CHENG X N, ZHU J J, LUO R, et al. Hot deformation behavior of new-typed CHDG-A06 austenitic stainless steel[J]. Materials for Mechanical Engineering, 2017, 41(3):98-102.
    [25]
    苑书林. 位错滑移攀移耦合的晶体塑性本构模型及其对高温下弯曲行为尺寸效应的模拟研究[C]//2018年全国固体力学学术会议摘要集(下). 北京:中国力学学会, 2018:172.

    YUAN S L. Crystal plasticity constitutive model of dislocation slip climbing coupling and its simulation study on the size effect of bending behavior at high temperature[C]//Abstract Set of 2018 National Academic Conference on Solid Mechanics (Part Ⅱ). Beijing:Chinese Society of Mechanics, 2018:172.
    [26]
    孙飞, 张建新. Ru对镍基单晶高温合金微观组织的影响[J]. 材料热处理学报, 2011, 32(10):1-8.

    SUN F, ZHANG J X. Influence of Ru on microstructure of Ni-base single crystal superalloys[J]. Transactions of Materials and Heat Treatment, 2011, 32(10):1-8.
    [27]
    SELLARS C M, MCTEGART W J.On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9):1136-1138.
    [28]
    ZENER C, HOLLOMON J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1):22-32.

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return