Citation: | LIAN Xiaojie. Hot Deformation Behavior of Stainless Steel Containing Boron[J]. Materials and Mechanical Engineering, 2021, 45(4): 81-87. DOI: 10.11973/jxgccl202104015 |
[1] |
佴启亮, 郑文杰, 宋志刚, 等. 硼含量对含硼不锈钢组织和性能的影响[J]. 钢铁研究学报, 2013(6):53-57.
NAI Q L, ZHENG W J, SONG Z G, et al. Effect of boron content on microstructure and property of boron stainless steel[J]. Journal of Iron and Steel Research, 2013(6):53-57.
|
[2] |
全燕鸣. 热能中子防护用含硼不锈钢[J]. 钢铁研究, 1989(4):114-115.
QUAN Y M. Stainless steel containing boron for thermal neutron protection[J]. Steel Research, 1989(4):114-115.
|
[3] |
于光.热中子屏蔽用的含硼不锈钢[J].钢铁研究学报,1989(1):90-90.
YU G. Boron-containing stainless steel for thermal neutron shield[J]. Journal of Iron and Steel Research, 1989(1):90-90.
|
[4] |
佴启亮. 乏燃料贮存材料(含硼不锈钢)的研究[D]. 昆明:昆明理工大学, 2013. NAI Q L. Study on spent fuel storage material (boron-containing stainless steel)[D]. Kunming:Kunming University of Science and Technology, 2013.
|
[5] |
BAI G S, LU S P, LI D Z, et al. Effects of boron on microstructure and metastable pitting corrosion behavior of super 304H austenitic stainless steel[J]. Journal of the Electrochemical Society, 2015,162(9):473-481.
|
[6] |
崔一士. 硼对S31254超级奥氏体不锈钢组织结构及耐蚀性的影响规律研究[D]. 太原:太原理工大学, 2019.
CUI Y S. Effect of boron on microstructure and corrosion resistance of S31254 super austenitic stainless steel[D]. Taiyuan:Taiyuan University of Technology, 2019.
|
[7] |
裴宇, 宋仁伯, 贾翼速,等. 退火工艺对304B奥氏体不锈钢钢丝组织性能的影响[J]. 武汉科技大学学报,2013,36(1):26-31.
PEI Y, SONG R B, JIA Y S, et al. Effects of annealing process on structure and properties of 304B austenitic strainless steel wire[J]. Journal of Wuhan University of Science and Technology, 2013,36(1):26-31.
|
[8] |
徐梅, 米振莉, 李辉, 等. 基于位错密度理论的超高强双相钢DP1000热变形本构模型[J]. 材料研究学报, 2017, 31(8):576-584.
XU M, MI Z L, LI H, et al. Constitutive model based on dislocation density theory for hot deformation behavior of ultra-high strength dual phase steel DP1000[J]. Chinese Journal of Materials Research, 2017, 31(8):576-584.
|
[9] |
WEN D X, LIN Y C, LI H B, et al. Hot deformation behavior and processing map of a typical Ni-based superalloy[J]. Materials Science & Engineering:A, 2014, 591(2):183-192.
|
[10] |
BERGSTRÖM Y. A dislocation model for the stress-strain behaviour of polycrystalline α-Fe with special emphasis on the variation of the densities of mobile and immobile dislocations[J]. Materials Science and Engineering, 1970, 5(4):193-200.
|
[11] |
SELLARS C M, TEGART W J. Hotworkability[J]. International Metallurgieal Reviews, 1972, 17:1-24.
|
[12] |
JONAS J J, SELLARS C M T. Strength and structure under hot-working conditions[J]. Metallurgical Reviews, 1969, 14(1):1-24.
|
[13] |
廖喜平, 谢其军, 胡成亮, 等. 304奥氏体不锈钢热变形行为及热加工图[J]. 锻压技术, 2017, 42(12):150-156.
LIAO X P, XIE Q J, HU C L, et al. Hot deformation behavior and processing map of austenite stainless steel 304[J]. Forging and Stamping Technology, 2017, 42(12):150-156.
|
[14] |
林高用, 张辉, 郭武超, 等. 7075铝合金热压缩变形流变应力[J]. 中国有色金属学报, 2001, 11(3):412-415.
LIN G Y, ZHANG H, GUO W C, et al. Flow stress of 7075 aluminum alloy during hot compression deformation[J]. The Chinese Journal of Nonferrous Metals, 2001, 11(3):412-415.
|
[15] |
RYAN N D, MCQUEEN H J. Dynamic softening mechanisms in 304 austenitic stainless steel[J]. Canadian Metallurgical Quarterly, 1990, 29(2):147-162.
|
[16] |
POLIAK E I, JONAS J J. A one-parmenter approach to determining the critical conditions for the initiation of dynamic recrystallization[J]. Acta Materialia, 1996, 44(1):127-136.
|
[17] |
HAN Y, WU H, ZHANG W, et al. Constitutive equation and dynamic recrystallization behavior of as-cast 254SMO super-austenitic stainless steel[J]. Materials and Design, 2015, 69(15):230-240.
|