Citation: | CAI Yuqing, HU Xiongfeng, QU Shengguan, ZHANG Yalong, LAI Fuqiang, LI Xiaoqiang. Effect of Shot Peening on Friction and Wear Properties of CF53 Steel[J]. Materials and Mechanical Engineering, 2021, 45(5): 27-33,38. DOI: 10.11973/jxgccl202105005 |
[1] |
YANG H, LI Z, ZHANG Z. Investigation on Zener-Hollomon parameter in the warm-hot deformation behavior of CF53[J]. Journal of Shanghai Jiaotong University (Science), 2007, 12(3):352-358.
|
[2] |
LIN Y C, WANG S W. Wear behavior of ceramic powder cladding on an S50C steel surface[J]. Tribology International. 2003, 36(1):1-9.
|
[3] |
徐滨士. 表面纳米工程[M]. 北京:化学工业出版社,2004. XU B S. Surface nanoengineering[M]. Beijing:Chemical Industry Press, 2004.
|
[4] |
PALACIOS M, BAGHERIFARD S, GUAGLIANO M, et al. Influence of severe shot peening on wear behaviour of an aluminium alloy[J]. Fatigue & Fracture of Engineering Materials & Structures, 2014, 37(7):821-829.
|
[5] |
ALSUMAIT A, LI Y, WEASER M, et al. A comparison of the fatigue life of shot-peened 4340M steel with 100, 200, and 300% coverage[J]. Journal of Materials Engineering and Performance, 2019, 28(3):1780-1789.
|
[6] |
MALEKI E, UNAL O, REZA K K. Efficiency analysis of shot peening parameters on variations of hardness, grain size and residual stress via Taguchi approach[J]. Metals and Materials International, 2019, 25(6):1436-1447.
|
[7] |
ERIKSSON R, MOVERARE J, CHEN Z. A low cycle fatigue life model for a shot peened gas turbine disc alloy[J]. International Journal of Fatigue, 2019, 124:34-41.
|
[8] |
BAG A, DELBERGUE D, AJAJA J, et al. Effect of different shot peening conditions on the fatigue life of 300M steel submitted to high stress amplitudes[J]. International Journal of Fatigue, 2020, 130:105274.
|
[9] |
田峰,杨辉. 40Cr钢表面高能喷丸纳米化及其耐磨性能[J]. 表面技术,2013,42(5):52-54.
TIAN F, YANG H. Experimental study on wear behavior of nano-crystallization surface of 40Cr[J]. Surface Technology, 2013, 42(5):52-54.
|
[10] |
GOPI R, SARAVANAN I, DEVARAJU A, et al. Investigation of shot peening process on stainless steel and its effects for tribological applications[J]. Materials Today:Proceedings, 2020, 22:580-584.
|
[11] |
MITROVIC S, ADAMOVIC D, ZIVIC F, et al. Friction and wear behavior of shot peened surfaces of 36CrNiMo4 and 36NiCrMo16 alloyed steels under dry and lubricated contact conditions[J]. Applied Surface Science, 2014, 290:223-232.
|
[12] |
SILVA K H S, CARNEIRO J R, COELHO R S, et al. Influence of shot peening on residual stresses and tribological behavior of cast and austempered ductile iron[J]. Wear, 2019, 440/441:203099.
|
[13] |
柳成才. 喷丸强化仿真分析与试验研究[D]. 沈阳:东北大学,2014. LIU C C. Finite element simulation of shot peening and its experimental verification[D]. Shenyang:Northeastern University, 2014.
|
[14] |
秦海迪,张亚龙,刘海鹏,等. 喷丸对25CrNi2MoV钢滚动接触疲劳性能的影响[J]. 表面技术,2020,49(5):222-229.
QIN H D, ZHANG Y L, LIU H P, et al. Effect of shot peening on rolling contact fatigue properties of 25CrNi2MoV steel[J]. Surface Technology, 2020, 49(5):222-229.
|
[15] |
史程程. BaMoO4粉体与NiCr-BaMoO4复合材料的制备及摩擦学性能[D]. 哈尔滨:哈尔滨工业大学,2013. SHI C C. Preparation of BaMoO4 powders and NiCr-BaMoO4 composites and their tribological properties[D]. Harbin:Harbin Institute of Technology,2013.
|
[16] |
解航,张安峰,李涤尘,等. 激光金属直接成形Ti6Al4V-CoCrMo梯度材料开裂研究[J]. 中国激光,2013,40(11):1103003. XIE H, ZHANG A F, LI D C, et al. Research on the cracking of Ti6Al4V-CoCrMo gradient material fabricated by laser metal direct forming[J]. Chinese Journal of Lasers, 2013, 40(11):1103003.
|
[17] |
CHEN M, JIANG C, XU Z, et al. Experimental study on macro- and microstress state, microstructural evolution of austenitic and ferritic steel processed by shot peening[J]. Surface and Coatings Technology, 2019, 359:511-519.
|
[18] |
HASSANI-GANGARAJ S M, CHO K S, VOIGT H J L, et al. Experimental assessment and simulation of surface nanocrystallization by severe shot peening[J]. Acta Materialia, 2015, 97:105-115.
|
[19] |
WANG H, SONG G, TANG G. Enhanced surface properties of austenitic stainless steel by electropulsing-assisted ultrasonic surface rolling process[J]. Surface and Coatings Technology, 2015, 282:149-154.
|
[20] |
HASSANI-GANGARAJ S M, MORIDI A, GUAGLIANO M, et al. Nitriding duration reduction without sacrificing mechanical characteristics and fatigue behavior:The beneficial effect of surface nano-crystallization by prior severe shot peening[J]. Materials & Design, 2014, 55:492-498.
|
[21] |
ZHANG Y, LAI F, QU S, et al. Effect of shot peening on residual stress distribution and tribological behaviors of 17Cr2Ni2MoVNb steel[J]. Surface and Coatings Technology, 2020, 386:125497.
|
[22] |
DIOMIDIS N, MISCHLER S. Third body effects on friction and wear during fretting of steel contacts[J]. Tribology International, 2011, 44(11):1452-1460.
|
[23] |
HAN X, ZHANG Z, HOU J, et al. Tribological behavior of shot peened/austempered AISI 5160 steel[J]. Tribology International, 2020, 145:106197.
|
[24] |
LIU H, JIANG C, CHEN M, et al. Surface layer microstructures and wear properties modifications of Mg-8Gd-3Y alloy treated by shot peening[J]. Materials Characterization, 2019, 158:109952.
|
[25] |
黎国猛,梁益龙,范航京,等. 水射流喷丸预处理对42CrMo钢氮化后接触疲劳性能的影响[J]. 材料导报,2019,33(9):3107-3112.
LI G M, LIANG Y L, FAND H J, et al. Effects of water jet shot peening pretreatment on contact fatigue properties of 42CrMo steel after plasma nitriding[J]. Materials Reports, 2019, 33(9):3107-3112.
|
[26] |
薛贤达,马悦辉,李岩. Ni50Ti30Zr20与Ni50Ti50合金摩擦磨损性能对比研究[J]. 表面技术,2019,48(12):204-210.
XUE X D, MA Y H, LI Y. Comparative study on friction and wear properties of Ni50Ti30Zr20 and Ni50Ti50 alloys[J]. Surface Technology, 2019, 48(12):204-210.
|
[27] |
刘洪志. 磨损与磨损可靠性[J]. 中国制造业信息化,2009,38(17):65-67.
LIU H Z. The abrasion and reliability[J]. Machine Design and Manufacturing Engineering, 2009, 38(17):65-67.
|
[28] |
HU X, LAI F, QU S, et al. Effects of microstructure evolution on fretting wear behaviors of 25CrNi2MoVE steel under different tempering states[J]. Metals, 2020, 10(3):351.
|
[29] |
马世宁,王翔,王晓明. 表面纳米化7A52铝合金在油润滑条件下的耐磨性能[J]. 中国表面工程,2012,25(1):28-32.
MA S Y, WANG X, WANG X M. Wear properties of 7A52 alloy aluminum after surface nanocrystallization in oil lubrication[J].China Surface Engineering,2012,25(1):28-32.
|