• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
BAO Zhiqiang, ZHANG Yong, ZHANG Zhuzhu, FAN Weijie, MENG Lili. Dynamic Mechanical Properties and J-C Constitutive Model for38CrMoAl High Strength Steel[J]. Materials and Mechanical Engineering, 2021, 45(5): 76-83. DOI: 10.11973/jxgccl202105014
Citation: BAO Zhiqiang, ZHANG Yong, ZHANG Zhuzhu, FAN Weijie, MENG Lili. Dynamic Mechanical Properties and J-C Constitutive Model for38CrMoAl High Strength Steel[J]. Materials and Mechanical Engineering, 2021, 45(5): 76-83. DOI: 10.11973/jxgccl202105014

Dynamic Mechanical Properties and J-C Constitutive Model for38CrMoAl High Strength Steel

More Information
  • Received Date: June 11, 2020
  • Revised Date: March 22, 2021
  • Quasi-static compression at low strain rates (10-4, 10-3, 10-2 s-1) and dynamic compression at high strain rates (850-4 500 s-1) were conducted on 38CrMoAl high strength steel with a hydraulic testing machine and a split Hopkinson pressure bar test device. The dynamic compressive mechanical properties of the steel and the microstructure after dynamic compression were studied. Considering the strain rate enhancement effect and adiabatic effect, the Johnson-Cook (J-C) constitutive model was modified, and was verified by experiments. The results show that the true yield strength of the test steel increased with the increase of the compressive strain rate, indicating an obvious strain rate enhancement effect. After compression at high strain rates, the strengthening zone with certain corrosion resistance appeared in the microstructure of the test steel. The average relative errors between the prediction by the modified J-C constitutive model and the experimental values of the true stresses were 1.76%-3.99%, indicating that the modified J-C constitutive model could describe the dynamic compressive mechanical properties of 38CrMoAl steel accurately.
  • [1]
    雷晓波,邓小宝,张强.飞机着陆冲击响应谱分析[J].飞机设计,2016,36(1):25-27.

    LEI X B,DENG X B,ZHANG Q.Analysis of shock response spectrum for aircraft landing[J].Aircraft Design,2016,36(1):25-27.
    [2]
    刘侠.国内38CrMoAl高铝钢现况及开发建议[J].冶金管理,2008(9):22-24.

    LIU X.Current status of domestic 38CrMoAl high aluminum steel and development suggestions[J].China Steel Focus,2008(9):22-24.
    [3]
    陈尧,纪庆新,魏坤霞,等.不同渗氮温度下38CrMoAl钢低氮氢比无白亮层离子渗氮[J].中国表面工程,2018,31(2):23-28.

    CHEN Y,JI Q X,WEI K X,et al.Plasma nitriding without white layer for 38CrMoAl steel with lower ratio of N2 to H2 under different temperature[J].China Surface Engineering,2018,31(2):23-28.
    [4]
    HUA X Z,ZHOU L,CUI X,et al.The effect of ammonia water on the microstructure and performance of plasma electrolytic saturation nitriding layer of 38CrMoAl steel[J].Physics Procedia,2013,50:304-314.
    [5]
    LIU J H,HAO X L,LI S M,et al.Effect of pre-corrosion on fatigue life of high strength steel 38CrMoAl[J].Journal of Wuhan University of Technology (Mater Sci Ed),2011,26(4):648-653.
    [6]
    NIU Q L,MING W W,CHEN M,et al.Dynamic mechanical behavior of ultra-high strength steel 30CrMnSiNi2A at high strain rates and elevated temperatures[J].Journal of Iron and Steel Research,International,2017,24(7):724-729.
    [7]
    薛进学,凌远非,崔凤奎,等.20钢动态力学性能及本构模型的建立[J].河南理工大学学报(自然科学版),2016,35(6):841-847.

    XUE J X,LING Y F,CUI F K,et al.The dynamic mechanical properties and constitutive model of 1020 steel[J].Journal of Henan Polytechnic University (Natural Science),2016,35(6):841-847.
    [8]
    郭子涛,高斌,郭钊,等.基于J-C模型的Q235钢的动态本构关系[J].爆炸与冲击,2018,38(4):804-810.

    GUO Z T,GAO B,GUO Z,et al.Dynamic constitutive relation based on J-C model of Q235 steel[J].Explosion and Shock Waves,2018,38(4):804-810.
    [9]
    魏刚,张伟,邓云飞.高强38CrSi钢力学性能测试及本构关系研究[J].振动与冲击,2019,38(18):179-184.

    WEI G,ZHANG W,DENG Y F.Mechanical property tests and the constitutive relation of high strength 38CrSi steel[J].Journal of Vibration and Shock,2019,38(18):179-184.
    [10]
    PRAWOTO Y,FANONE M,SHAHEDI S,et al.Computational approach using Johnson-Cook model on dual phase steel[J].Computational Materials Science,2012,54:48-55.
    [11]
    武海军,姚伟,黄风雷,等.超高强度钢30CrMnSiNi2A动态力学性能实验研究[J].北京理工大学学报,2010,30(3):258-262.

    WU H J,YAO W,HUANG F L,et al.Experimental study on dynamic mechanical properties of ultrahigh strength 30CrMnSiNi2A steel[J].Transactions of Beijing Institute of Technology,2010,30(3):258-262.
    [12]
    李红斌,郑明月,田伟,等.基于Johnson-Cook模型构建M50NiL齿轮钢的流变应力本构方程[J].机械工程材料,2016,40(11):31-37.

    LI H B,ZHENG M Y,TIAN W,et al.Flow stress constitutive equation of M50NiL gear steel based on Johnson-cook model[J].Materials for Mechanical Engineering,2016,40(11):31-37.
    [13]
    GEORGE T, GRAY G T. Classic split-Hopkinson pressure bar testing[M]//ASM Handbook, Vol 8. Mechanical Testing and Evaluation. Detroit:ASM International, 2000:462-476.
    [14]
    俞晓强,郑百林,杨彪,等.SHPB实验考虑绝热变形和端面摩擦的修正方法[J].航空动力学报,2018,33(10):2367-2375.

    YU X Q,ZHENG B L,YANG B,et al.Correction method of SHPB experiment considering adiabatic deformation and interfacial friction effects[J].Journal of Aerospace Power,2018,33(10):2367-2375.
    [15]
    宋力,胡时胜.SHPB数据处理中的二波法与三波法[J].爆炸与冲击,2005,25(4):368-373.

    SONG L,HU S S.Two-wave and three-wave method in SHPB data processing[J].Explosion and Shock Waves,2005,25(4):368-373.
    [16]
    卢也森.42CrMo钢力学性能研究及其动态本构描述[D].成都:西南交通大学,2017.

    LU Y S.Mechanical properties and dynamic constitutive model of 42CrMo steel[D].Chengdu:Southwest Jiaotong University,2017.
    [17]
    张长清,谢兰生,陈明和,等.高应变率下TC4-DT钛合金的动态力学性能及塑性本构关系[J].中国有色金属学报,2015,25(2):323-329.

    ZHANG C Q,XIE L S,CHEN M H,et al.Dynamic mechanical property and plastic constitutive relation of TC4-DT Ti alloy under high strain rate[J].The Chinese Journal of Nonferrous Metals,2015,25(2):323-329.
    [18]
    包卫平,赵昱臻,李春明,等.纯铁高温高应变率下的动态本构关系试验研究[J].机械工程学报,2010,46(4):74-79.

    BAO W P,ZHAO Y Z,LI C M,et al.Experimental research on the dynamic constitutive relation of pure iron at elevated temperatures and high strain rates[J].Journal of Mechanical Engineering,2010,46(4):74-79.
    [19]
    王佳斌,丁军,宋鹍,等.冲击载荷下20CrMnTi钢动态应力响应与考虑绝热温升修正J-C本构模型研究[J].机械强度,2019,41(5):1066-1070.

    WANG J B,DING J,SONG K,et al.Studied on dynamic stress response of 20CrMnTi steel under impact load and considered for adiabatic temperature rise modification of the J-C constitutive model[J].Journal of Mechanical Strength,2019,41(5):1066-1070.
    [20]
    于文静,史健勇,赵金城.Q345钢材动态力学性能研究[J].建筑结构,2011,41(3):28-30.

    YU W J,SHI J Y,ZHAO J C.Research of dynamic mechanical behavior of Q345 steel[J].Building Structure,2011,41(3):28-30.
    [21]
    陈刚,王青权,杜洪军.S500MC钢动态力学性能试验研究[J].铁道技术监督,2019,47(5):27-30.

    CHEN G,WANG Q Q,DU H J.Experimental study of dynamic mechanical property on S500MC steel[J].Railway Quality Control,2019,47(5):27-30.
    [22]
    冉春,陈鹏万,李玲,等.中高应变率条件下TC18钛合金动态力学行为的实验研究[J].兵工学报,2017,38(9):1723-1728.

    RAN C,CHEN P W,LI L,et al.Experimental research on dynamic mechanical behavior of TC18 titanium alloy under medium and high strain rates[J].Acta Armamentarii,2017,38(9):1723-1728.
    [23]
    刘豪.38CrMoAl钢再结晶行为研究[D].大连:大连理工大学,2020.

    LIU H.Study on recrystallization behavior of 38CrMoAl steel[D].Dalian:Dalian University of Technology,2020.
    [24]
    张柱柱,陈跃良,姚念奎,等.冲击载荷作用下38CrMoAl渗氮钢损伤机理和耐腐蚀性能研究[J/OL].航空学报. http://kns.cnki.net/kcms/detail/11.1929.V.20200707.1308.028.html" target="_blank"> http://kns.cnki.net/kcms/detail/11.1929.V.20200707.1308.028.html. ZHANG Z Z,CHEN Y L,YAO N K,et al.Research on damage mechanism and corrosion resistance of 38CrMoAl nitrided steel under impact load[J/OL].Acta Aeronautica et Astronautica Sinica. http://kns.cnki.net/kcms/detail/11.1929.V.20200707.1308.028.html" target="_blank"> http://kns.cnki.net/kcms/detail/11.1929.V.20200707.1308.028.html.
    [25]
    HU H H,LIM J H,PARK S H.High speed tensile test of steel sheets for the stress-strain curve at the intermediate strain rate[J].International Journal of Automotive Technology,2009,10(2):195-204.
    [26]
    NEMAT-NASSER S,GUO W G.Thermomechanical response of DH-36 structural steel over a wide range of strain rates and temperatures[J].Mechanics of Materials,2003,35(11):1023-1047.
    [27]
    张连生,黄风雷,段卓平,等.材料动态强度的应变率效应及其唯象本构模型[C]//第十届全国冲击动力学学术会议论文摘要集.太原:中国力学学会,2011:141-141.

    ZHANG L S, HUANG F L, DUAN Z P, et al. Strain rate effect of material dynamic strength and its phenomenological constitutive model[C]//Proceedings of the 10th National Conference on Shock Dynamics. Taiyuan:Chinese Society of Mechanics, 2011:141-141.
    [28]
    尚兵,盛精,王宝珍,等.不锈钢材料的动态力学性能及本构模型[J].爆炸与冲击,2008,28(6):527-531.

    SHANG B,SHENG J,WANG B Z,et al.Dynamic mechanical behavior and constitutive model of stainless steel[J].Explosion and Shock Waves,2008,28(6):527-531.
    [29]
    柳爱群,黄西成.高应变率变形的Johnson-Cook动态本构模型参数识别方法[J].应用数学和力学,2014,35(2):219-225.

    LIU A Q,HUANG X C.Identification of high-strain-rate material parameters in dynamic Johnson-cook constitutive model[J].Applied Mathematics and Mechanics,2014,35(2):219-225.

Catalog

    Article views (20) PDF downloads (7) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return