Citation: | JING Ya, ZHONG Fei, YUAN Guangjian, CAO Xian, WANG Runzi, ZHOU Guoyan, ZHANG Xiancheng. Study on Notch Effect of GH4169 Alloy by Crystal Plasticity Theory[J]. Materials and Mechanical Engineering, 2021, 45(5): 84-90,95. DOI: 10.11973/jxgccl202105015 |
[1] |
刘晓, 闫欢松, 孔祖开, 等. GH4169高温合金的动态力学行为及其本构关系[J]. 机械工程材料, 2019, 43(1):75-81.
LIU X, YAN H S, KONG Z K, et al. Dynamic mechanical behavior and constitutive relationship of superalloy GH4169[J]. Materials for Mechanical Engineering,2019,43(1):75-81.
|
[2] |
秦承华, 叶申, 张显程, 等. 晶粒尺寸对GH4169镍基合金疲劳小裂纹扩展的影响[J]. 机械工程材料,2016,40(2):11-15.
QIN C H, YE S, ZHANG X C, et al. Effects of grain sizes on small fatigue crack growth of GH4169 Ni-base alloy[J]. Materials for Mechanical Engineering, 2016, 40(2):11-15.
|
[3] |
TELESMAN J, GABB T P, GHOSN L J, et al. Effect of notches on creep-fatigue behavior of a P/M nickel-based superalloy[J]. International Journal of Fatigue, 2016, 87:311-325.
|
[4] |
AN T, ZHENG S Q, PENG H T, et al. Synergistic action of hydrogen and stress concentration on the fatigue properties of X80 pipeline steel[J]. Materials Science and Engineering:A, 2017, 700:321-330.
|
[5] |
HUANG J, YANG X G, SHI D Q, et al. Systematic methodology for high temperature LCF life prediction of smooth and notched Ni-based superalloy with and without dwells[J]. Computational Materials Science,2014,89:65-74.
|
[6] |
CAMPBELL J P, RITCHIE R O. Mixed-mode, high-cycle fatigue-crack growth thresholds in Ti-6Al-4V:Ⅱ. Quantification of crack-tip shielding[J]. Engineering Fracture Mechanics, 2000, 67(3):229-249.
|
[7] |
MCDOWELL D L, DUNNE F P E. Microstructure-sensitive computational modeling of fatigue crack formation[J]. International Journal of Fatigue, 2010, 32(9):1521-1542.
|
[8] |
ROTERS F, EISENLOHR P, HANTCHERLI L, et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling:Theory, experiments, applications[J]. Acta Materialia, 2010, 58(4):1152-1211.
|
[9] |
MANONUKUL A, DUNNE F P E. High- and low-cycle fatigue crack initiation using polycrystal plasticity[J]. Proceedings of the Royal Society of London Series A:Mathematical, Physical and Engineering Sciences, 2004, 460(2047):1881-1903.
|
[10] |
DUNNE F P E, WILKINSON A J, ALLEN R. Experimental and computational studies of low cycle fatigue crack nucleation in a polycrystal[J]. International Journal of Plasticity, 2007, 23(2):273-295.
|
[11] |
QIN C H, ZHANG X C, YE S, et al. Grain size effect on multi-scale fatigue crack growth mechanism of nickel-based alloy GH4169[J]. Engineering Fracture Mechanics, 2015, 142:140-153.
|
[12] |
JORDON J B, BERNARD J D, NEWMAN J C Jr. Quantifying microstructurally small fatigue crack growth in an aluminum alloy using a silicon-rubber replica method[J]. International Journal of Fatigue, 2012, 36(1):206-210.
|
[13] |
皮华春, 韩静涛, 章传国, 等. 纯铝单向压缩过程的晶体塑性有限元模拟[J]. 机械工程材料, 2006, 30(11):66-68.
PI H C, HAN J T, ZHANG C G, et al. Crystal plasticity finite element modeling uniaxial compression of pure Al[J]. Materials for Mechanical Engineering, 2006, 30(11):66-68.
|
[14] |
张宏建, 温卫东, 崔海涛. TiAl金属间化合物材料本构模型的研究进展[J]. 机械工程材料, 2013, 37(7):1-5.
ZHANG H J, WEN W D, CUI H T. Progress in research of constitutive models of TiAl intermetallic materials[J]. Materials for Mechanical Engineering, 2013, 37(7):1-5.
|
[15] |
ARMSTRONG P J, FREDERICK C O. A mathematical representation of the multiaxial Bauschinger effect[M]. Berkeley:Central Electricity Generating Board, 1966.
|
[16] |
YUAN G J, ZHANG X C, CHEN B, et al. Low-cycle fatigue life prediction of a polycrystalline nickel-base superalloy using crystal plasticity modelling approach[J]. Journal of Materials Science & Technology,2020,38:28-38.
|
[17] |
OKABE A, BOOTS B, SUGIHARA K, et al. Spatial tessellations:Concepts and applications of Voronoi diagrams[M].[S.l.]:John Wiley & Sons, 2009.
|
[18] |
LIN B, ZHAO L G, TONG J, et al. Crystal plasticity modeling of cyclic deformation for a polycrystalline nickel-based superalloy at high temperature[J]. Materials Science and Engineering:A, 2010, 527(15):3581-3587.
|
[19] |
VAN DER SLUIS O, SCHREURS P J G, BREKELMANS W A M, et al. Overall behaviour of heterogeneous elastoviscoplastic materials:Effect of microstructural modelling[J]. Mechanics of Materials,2000,32(8):449-462.
|
[20] |
SMIT R J M, BREKELMANS W A M, MEIJER H E H. Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling[J]. Computer Methods in Applied Mechanics and Engineering, 1998, 155(1/2):181-192.
|
[21] |
SAUZAY M. Cubic elasticity and stress distribution at the free surface of polycrystals[J]. Acta Materialia, 2007, 55(4):1193-1202.
|
[22] |
DENG G J, TU S T, ZHANG X C, et al. Grain size effect on the small fatigue crack initiation and growth mechanisms of nickel-based superalloy GH4169[J]. Engineering Fracture Mechanics, 2015, 134:433-450.
|
[23] |
WANG R Q, LI D, HU D Y, et al. A combined critical distance and highly-stressed-volume model to evaluate the statistical size effect of the stress concentrator on low cycle fatigue of TA19 plate[J]. International Journal of Fatigue, 2017, 95:8-17.
|
[24] |
VINCENT M, NADOT Y, NADOT-MARTIN C, et al. Interaction between a surface defect and grain size under high cycle fatigue loading:Experimental approach for Armco iron[J]. International Journal of Fatigue, 2016, 87:81-90.
|