• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
ZHOU Xiaogang, JI Feifei. Fatigue Properties and Crack Growth Prediction Model of TC4Titanium Alloy Subjected to Multiple Laser Shot Peening[J]. Materials and Mechanical Engineering, 2021, 45(5): 100-104. DOI: 10.11973/jxgccl202105018
Citation: ZHOU Xiaogang, JI Feifei. Fatigue Properties and Crack Growth Prediction Model of TC4Titanium Alloy Subjected to Multiple Laser Shot Peening[J]. Materials and Mechanical Engineering, 2021, 45(5): 100-104. DOI: 10.11973/jxgccl202105018

Fatigue Properties and Crack Growth Prediction Model of TC4Titanium Alloy Subjected to Multiple Laser Shot Peening

More Information
  • Received Date: June 11, 2020
  • Revised Date: March 23, 2021
  • TC4 titanium alloy plates were subjected to laser shot peening for different times and then subjected to high cycle fatigue tests. The fatigue properties and fracture mechanism of the alloy were studied. Considering the retardation effect of the residual compressive stress and the mesoscopic size of grain boundaries on the microcrack growth, the suppression parameter, open stress intensity factor and residual stress intensity factor were introduced to modify the Paris formula. Then a prediction model for fatigue microcrack growth after laser shot peening was established and verified by experiments. The results show that with the increase of the number of shot peening, the fatigue strength and fatigue life of the TC4 titanium alloy increased, and the fracture mode changed from brittle fracture to ductile fracture. The relative errors of the fatigue life predicted by the fatigue microcrack prediction model and the test results were less than 10%, indicating that the model was accurate.
  • [1]
    ZHANG D C, WANG L Y, ZHANG H, et al. Effect of heat treatment on the tensile behavior of selective laser melted Ti-6Al-4V by in situ X-ray characterization[J]. Acta Materialia, 2020, 189:93-104.
    [2]
    HUANG S, ZHU Y, GUO W, et al. Impact toughness and microstructural response of Ti-17 titanium alloy subjected to laser shock peening[J]. Surface and Coatings Technology, 2017, 327:32-41.
    [3]
    VOISIN T, CALTA N P, KHAIRALLAH S A, et al. Defects-dictated tensile properties of selective laser melted Ti-6Al-4V[J]. Materials & Design, 2018, 158:113-126.
    [4]
    TAN L, YAO C F, ZHANG D H, et al. Evolution of surface integrity and fatigue properties after milling, polishing, and shot peening of TC17 alloy blades[J]. International Journal of Fatigue, 2020, 136:105630.
    [5]
    ZHANG H, REN Z C, LIU J, et al. Microstructure evolution and electroplasticity in Ti64 subjected to electropulsing-assisted laser shock peening[J]. Journal of Alloys and Compounds, 2019, 802:573-582.
    [6]
    LI H M, LIU Y G, LI M Q, et al. The gradient crystalline structure and microhardness in the treated layer of TC17 via high energy shot peening[J]. Applied Surface Science, 2015, 357:197-203.
    [7]
    任旭东, 张永康, 周建忠, 等. 激光冲击对金属板料裂纹的影响模型[J]. 中国机械工程, 2008, 19(3):358-360.

    REN X D, ZHANG Y K, ZHOU J Z, et al. Study on metal crack mode under laser-shock processing[J]. China Mechanical Engineering, 2008, 19(3):358-360.
    [8]
    李媛, 何卫锋, 周舟. 变参数激光冲击TC17钛合金疲劳裂纹扩展特性[J]. 激光与红外, 2017, 47(10):1228-1233.

    LI Y, HE W F, ZHOU Z. Fatigue crack propagation property of TC17 titanium alloy by laser shock peening[J]. Laser & Infrared, 2017, 47(10):1228-1233.
    [9]
    SUN R J, LI L H, GUO W, et al. Laser shock peening induced fatigue crack retardation in Ti-17 titanium alloy[J]. Materials Science and Engineering:A, 2018, 737:94-104.
    [10]
    WANG Y, PHILP B, XU Z Y, et al. Study on fatigue crack growth performance of EH36 weldments by laser shock processing[J]. Surfaces and Interfaces, 2019(15):199-204.
    [11]
    倪向贵, 李新亮, 王秀喜. 疲劳裂纹扩展规律Paris公式的一般修正及应用[J]. 压力容器, 2006, 23(12):8-15.

    NI X G, LI X L, WANG X X. General modification and application of the Paris law for fatigue crack propagation[J]. Pressure Vessel Technology, 2006, 23(12):8-15.
    [12]
    王永廉, 吴永端. 一个适用性广泛的疲劳裂纹扩展速率表达式[J]. 航空学报, 1987, 8(4):191-197.

    WANG Y L, WU Y D. A universally applicable fatigue crack-growth-rate decription[J]. Acta Aeronautica et Astronautica Sinica, 1987, 8(4):191-197.
    [13]
    TADDESSE A T, ZHU S P, LIAO D, et al. Cyclic plastic zone-based notch analysis and damage evolution model for fatigue life prediction of metals[J]. Materials & Design, 2020, 191:108639.
    [14]
    崔振旗, 徐可为, 胡奈赛. 残余压应力场中疲劳短裂纹扩展模型及实验[J]. 金属学报, 1994, 30(2):65-69.

    CUI Z Q, XU K W, HU N S. Model and experiments on fatigue short crack growth in residual stress field[J]. Acta Metallrugica Sinica, 1994, 30(2):65-69.
    [15]
    BALLARD P, FOURNIER J, FABBRO R, et al. Residual stresses induced by laser-shocks[J]. Le Journal de Physique IV, 1991, 1(S8):487-494.

Catalog

    Article views (4) PDF downloads (2) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return