Citation: | ZHOU Xiaogang, JI Feifei. Fatigue Properties and Crack Growth Prediction Model of TC4Titanium Alloy Subjected to Multiple Laser Shot Peening[J]. Materials and Mechanical Engineering, 2021, 45(5): 100-104. DOI: 10.11973/jxgccl202105018 |
[1] |
ZHANG D C, WANG L Y, ZHANG H, et al. Effect of heat treatment on the tensile behavior of selective laser melted Ti-6Al-4V by in situ X-ray characterization[J]. Acta Materialia, 2020, 189:93-104.
|
[2] |
HUANG S, ZHU Y, GUO W, et al. Impact toughness and microstructural response of Ti-17 titanium alloy subjected to laser shock peening[J]. Surface and Coatings Technology, 2017, 327:32-41.
|
[3] |
VOISIN T, CALTA N P, KHAIRALLAH S A, et al. Defects-dictated tensile properties of selective laser melted Ti-6Al-4V[J]. Materials & Design, 2018, 158:113-126.
|
[4] |
TAN L, YAO C F, ZHANG D H, et al. Evolution of surface integrity and fatigue properties after milling, polishing, and shot peening of TC17 alloy blades[J]. International Journal of Fatigue, 2020, 136:105630.
|
[5] |
ZHANG H, REN Z C, LIU J, et al. Microstructure evolution and electroplasticity in Ti64 subjected to electropulsing-assisted laser shock peening[J]. Journal of Alloys and Compounds, 2019, 802:573-582.
|
[6] |
LI H M, LIU Y G, LI M Q, et al. The gradient crystalline structure and microhardness in the treated layer of TC17 via high energy shot peening[J]. Applied Surface Science, 2015, 357:197-203.
|
[7] |
任旭东, 张永康, 周建忠, 等. 激光冲击对金属板料裂纹的影响模型[J]. 中国机械工程, 2008, 19(3):358-360.
REN X D, ZHANG Y K, ZHOU J Z, et al. Study on metal crack mode under laser-shock processing[J]. China Mechanical Engineering, 2008, 19(3):358-360.
|
[8] |
李媛, 何卫锋, 周舟. 变参数激光冲击TC17钛合金疲劳裂纹扩展特性[J]. 激光与红外, 2017, 47(10):1228-1233.
LI Y, HE W F, ZHOU Z. Fatigue crack propagation property of TC17 titanium alloy by laser shock peening[J]. Laser & Infrared, 2017, 47(10):1228-1233.
|
[9] |
SUN R J, LI L H, GUO W, et al. Laser shock peening induced fatigue crack retardation in Ti-17 titanium alloy[J]. Materials Science and Engineering:A, 2018, 737:94-104.
|
[10] |
WANG Y, PHILP B, XU Z Y, et al. Study on fatigue crack growth performance of EH36 weldments by laser shock processing[J]. Surfaces and Interfaces, 2019(15):199-204.
|
[11] |
倪向贵, 李新亮, 王秀喜. 疲劳裂纹扩展规律Paris公式的一般修正及应用[J]. 压力容器, 2006, 23(12):8-15.
NI X G, LI X L, WANG X X. General modification and application of the Paris law for fatigue crack propagation[J]. Pressure Vessel Technology, 2006, 23(12):8-15.
|
[12] |
王永廉, 吴永端. 一个适用性广泛的疲劳裂纹扩展速率表达式[J]. 航空学报, 1987, 8(4):191-197.
WANG Y L, WU Y D. A universally applicable fatigue crack-growth-rate decription[J]. Acta Aeronautica et Astronautica Sinica, 1987, 8(4):191-197.
|
[13] |
TADDESSE A T, ZHU S P, LIAO D, et al. Cyclic plastic zone-based notch analysis and damage evolution model for fatigue life prediction of metals[J]. Materials & Design, 2020, 191:108639.
|
[14] |
崔振旗, 徐可为, 胡奈赛. 残余压应力场中疲劳短裂纹扩展模型及实验[J]. 金属学报, 1994, 30(2):65-69.
CUI Z Q, XU K W, HU N S. Model and experiments on fatigue short crack growth in residual stress field[J]. Acta Metallrugica Sinica, 1994, 30(2):65-69.
|
[15] |
BALLARD P, FOURNIER J, FABBRO R, et al. Residual stresses induced by laser-shocks[J]. Le Journal de Physique IV, 1991, 1(S8):487-494.
|