Citation: | WU Haili. Asymmetric Strain Fatigue Behavior and Life Prediction of 3.5NiCrMoV Steel and 20Cr13 Steel for Steam Turbine[J]. Materials and Mechanical Engineering, 2021, 45(9): 45-50. DOI: 10.11973/jxgccl202109009 |
[1] |
李舜酩. 机械疲劳与可靠性设计[M]. 北京:科学出版社, 2006.
LI S M. Mechanic fatigue and reliability design[M]. Beijing:Science Press, 2006.
|
[2] |
MANSON S S. Behaviors of materials under condition of the thermal stress:NACA TN-2933[R].[S.l.]:National Advisory Committee for Aeronautics, 1954.
|
[3] |
COFFIN L F. A study of the effects of cyclic thermal stresses on a ductile metal:KAPL-853[R].[S.l.]:Knolls Atomic Power Lab, 1954.
|
[4] |
MORROW J D. Fatigue design handbook-advances in engineering[M]. Warrendale, PA:Society of Automotive Engineers, 1968:21-29.
|
[5] |
SMITH K N, WATSON P, TOPPER T H. Stress-strain function for the fatigue of metals[J]. Journal of Materials, 1970, 5(4):767-778.
|
[6] |
ELLYIN F, KUJAWSKI D. An energy-based fatigue failure criterion[M].[S.l.]:EAMS, 1986:541-600.
|
[7] |
张孝忠, 王恭义, 程凯, 等.一种考虑平均应力松弛的汽轮机叶根低周疲劳寿命预测方法[J].材料科学与工程学报.2019, 37(5):709-713.
ZHANG X Z, WANG G Y, CHENG K, et al. LCF life prediction method of turbine blade roots considering mean stress relaxation effect[J].Journal of Materials Science and Engineering, 2019, 37(5):709-713.
|
[8] |
吴德龙.载荷模式对9-12%Cr钢高温低周疲劳行为影响及循环本构研究[D]. 上海:华东理工大学, 2016. WU D L. Effect of control mode on high temperature low cycle fatigue behavior of 9-12%Cr steel and cyclic constitutive modeling[D]. Shanghai:East China University of Science and Technology, 2016.
|
[9] |
田阳, 陈巍峰, 赵姿贞, 等.应变比对2.25Cr1MoV钢高温低周疲劳行为的影响[J].机械工程材料.2015, 39(11):83-87.
TIAN Y, CHEN W F, ZHAO Z Z, et al. Effect of strain ratio on low cycle fatigue behavior of 2.25Cr1MoV steel at high temperature[J]. Materials for Mechanical Engineering, 2015, 39(11):83-87.
|
[10] |
张仕朝, 于慧臣, 李影.不同应变比下GH3030合金的高温低周疲劳行为[J].机械工程材料.2014, 38(1):56-59.
ZHANG S C, YU H C, LI Y, et al. Low cycle fatigue behavior of a superalloy GH3030 at elevated temperature and different strain ratios[J]. Materials for Mechanical Engineering, 2014, 38(1):56-59.
|
[11] |
张仕朝, 李旭东, 于慧臣, 等.DD6合金1100℃低周疲劳行为[J]. 航空材料学报.2018, 38(1):95-100.
ZHANG S C, LI X D, YU H C, et al. Low cycle fatigue of single crystal nickel-based superalloy DD6 at 1100℃[J]. Journal of Aeronautical Materials, 2018, 38(1):95-100.
|
[12] |
KOH S K, STEPHENS R I. Mean stress effects on low cycle fatigue for a high strength steel[J]. Fatigue and Fracture of Engineering Materials and Structures, 1991, 14(4):413-428.
|
[13] |
吴海利, 安春香, 王朋, 等.2.25CrMoV钢于夹杂物和晶界开裂的低周疲劳裂纹扩展行为原位观测[J].机械工程材料, 2016, 40(3):15-18.
WU H L, AN C X, WANG P, et al. In situ crack propagation behavior observation at inclusions and grain boundary of 2.25CrMoV steel under low cycle fatigue[J]. Materials for Mechanical Engineering, 2016, 40(3):15-18.
|
[14] |
ARMAS A F, PETERSEN C, SCHMITT R, et al. Cyclic instability of martensite laths in reduced activation ferritic/martensitic steels[J].Journal of Nuclear Materials, 2004, 329:252-256.
|