• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
YUE Fengli, REN Shijie, XU Yong, CHEN Weijin, ZHANG Shihong, ZOU Lichun, SHAO Yunkai. Finite Element Simulation on Fatigue Properties of S500MC HighStrength Steel Automobile Rim by Hydroforming[J]. Materials and Mechanical Engineering, 2021, 45(11): 62-67,75. DOI: 10.11973/jxgccl202111012
Citation: YUE Fengli, REN Shijie, XU Yong, CHEN Weijin, ZHANG Shihong, ZOU Lichun, SHAO Yunkai. Finite Element Simulation on Fatigue Properties of S500MC HighStrength Steel Automobile Rim by Hydroforming[J]. Materials and Mechanical Engineering, 2021, 45(11): 62-67,75. DOI: 10.11973/jxgccl202111012

Finite Element Simulation on Fatigue Properties of S500MC HighStrength Steel Automobile Rim by Hydroforming

More Information
  • Received Date: August 24, 2020
  • Revised Date: July 22, 2021
  • With 2.0 mm thick S500MC microalloyed high strength steel plate as raw material, an automobile rim was manufactured by hydroforming process. The fatigue properties of the rim were analyzed by finite element method, and were compared with those of conventional rolling formed SPFH540 medium strength low alloy steel rim with uniform wall thickness of 2.3 mm and S500MC microalloyed high strength steel rim with uniform wall thickness of 2.0 mm. The results show that the maximum reduction rate of wall thickness of hydroformed rim was 10.9%. The change trend of section bending stress and radial stress of the hydroformed rim was consistent with those of the two rolling formed rims, indicating that the local thinning of the rim did not significantly change the stress of the rim. The maximum bending stress and radial stress of the hydroformed rim were lower than the yield strength of the steel, the maximum bending strain and radial strain were far less than the yield strain, and the fatigue property safety factor was greater than 1, indicating that the local thinning of wall thickness would not affect the bending and radial fatigue properties of the rim.
  • [1]
    CHAI W H, LIU X D, SHAN Y C, et al. Research on simulation of the bending fatigue test of automotive wheel made of long glass fiber reinforced thermoplastic considering anisotropic property[J]. Advances in Engineering Software, 2018, 116:1-8.
    [2]
    LIAO X T, LI Q, YANG X J, et al. Multiobjective optimization for crash safety design of vehicles using stepwise regression model[J]. Structural and Multidisciplinary Optimization, 2008, 35(6):561-569.
    [3]
    PERETZ J H, DAS S, TONN B E.Evaluating knowledge benefits of automotive lightweighting materials R&D projects[J]. Evaluation and Program Planning, 2009, 32(3):300-309.
    [4]
    ABEDRABBO N, WORSWICK M, MAYER R, et al. Optimization methods for the tube hydroforming process applied to advanced high-strength steels with experimental verification[J]. Journal of Materials Processing Technology, 2009, 209(1):110-123.
    [5]
    鄢奉林, 陆兵, 倪利勇.钢制车轮动态弯曲试验疲劳寿命预测[J]. 机械设计与制造, 2010(6):117-119.

    YAN F L, LU B, NI L Y.Fatigue life evaluation of steel wheel dynamic cornering test[J]. Machinery Design & Manufacture, 2010(6):117-119.
    [6]
    汪谟清, 孙鑫, 沈磊.基于有限元的卡车车轮疲劳分析方法[J]. 现代制造工程, 2017(11):88-92.

    WANG M Q, SUN X, SHEN L.The fatigue analysis for truck wheel based on FEA[J]. Modern Manufacturing Engineering, 2017(11):88-92.
    [7]
    郝琪, 蔡芳.钢制车轮弯曲试验多轴疲劳寿命预测研究[J]. 汽车技术, 2011(2):47-50.

    HAO Q, CAI F.The study on steel wheel multi-axial fatigue life prediction of bending test[J]. Automobile Technology, 2011(2):47-50.
    [8]
    韦辽, 李健.车轮轮辋轻量化分析与研究[J]. 机械设计与制造, 2014(3):196-198.

    WEI L, LI J.Lightweight analysis and research of wheel rim[J]. Machinery Design & Manufacture, 2014(3):196-198.
    [9]
    韩聪, 张伟玮, 韩怀志, 等.内高压成形波节管承载特性分析[J]. 材料科学与工艺, 2013, 21(4):1-6.

    HAN C, ZHANG W W, HAN H Z, et al. Analysis of carrying capacity for hydroformed corrugated tubes[J]. Materials Science and Technology, 2013, 21(4):1-6.
    [10]
    STEARNS J, SRIVATSAN T S, PRAKASH A, et al. Modeling the mechanical response of an aluminum alloy automotive rim[J]. Materials Science and Engineering:A, 2004, 366(2):262-268.
    [11]
    STEARNS J, SRIVATSAN T S, GAO X, et al. Understanding the influence of pressure and radial loads on stress and displacement response of a rotating body:the automobile wheel[J]. International Journal of Rotating Machinery, 2006, 2006:1-8.
    [12]
    王海霞, 刘献栋, 单颖春, 等.考虑材料非线性和辐辋过盈装配的车轮径向疲劳特性研究[J]. 汽车工程, 2013, 35(9):822-826.

    WANG H X, LIU X D, SHAN Y C, et al. A study on the radial fatigue characteristics of vehicle steel wheel considering the material nonlinearity and spoke/rim interference fit[J]. Automotive Engineering, 2013, 35(9):822-826.
    [13]
    闫胜昝, 童水光, 张响, 等.汽车车轮弯曲疲劳试验分析研究[J]. 机械强度, 2008, 30(4):687-691.

    YAN S Z, TONG S G, ZHANG X, et al. Analysis study on bending fatigue test of automobile wheels[J]. Journal of Mechanical Strength, 2008, 30(4):687-691.
    [14]
    刘恩泽.钢制车轮设计与疲劳分析的有限元仿真与验证[D].长春:吉林大学, 2014.

    LIU E Z.Finite element simulation and verification on designs and fatigue analysis of steel wheel[D].Changchun:Jilin University, 2014.
    [15]
    王亚北.DP600钢制轮毂疲劳分析[D].沈阳:沈阳理工大学, 2015.

    WANG Y B.Fatigue analysis of DP600 steel wheel hub[D].Shenyang:Shenyang Ligong University, 2015.
    [16]
    陈刚, 王青权, 杜洪军.S500MC钢动态力学性能试验研究[J]. 铁道技术监督, 2019, 47(5):27-30.

    CHEN G, WANG Q Q, DU H J.Experimental study of dynamic mechanical property on S500MC steel[J]. Railway Quality Control, 2019, 47(5):27-30.
    [17]
    邹立春.基于Abaqus结构分析结果的车轮寿命预测[J]. 计算机辅助工程, 2013, 22(增刊2):148-151.

    ZOU L C.Wheel life prediction based on structure analysis results using Abaqus[J]. Computer Aided Engineering, 2013, 22(S2):148-151.

Catalog

    Article views (2) PDF downloads (2) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return