• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
LI Tianmei, DING Wenhong, MING Yafei, WU Mengxian, YANG Yun. Influence of Rolling Reduction on Interfacial Bonding Performance of Carbon Steel/Stainless Steel Clad Plate[J]. Materials and Mechanical Engineering, 2021, 45(12): 19-25. DOI: 10.11973/jxgccl202112004
Citation: LI Tianmei, DING Wenhong, MING Yafei, WU Mengxian, YANG Yun. Influence of Rolling Reduction on Interfacial Bonding Performance of Carbon Steel/Stainless Steel Clad Plate[J]. Materials and Mechanical Engineering, 2021, 45(12): 19-25. DOI: 10.11973/jxgccl202112004

Influence of Rolling Reduction on Interfacial Bonding Performance of Carbon Steel/Stainless Steel Clad Plate

More Information
  • Received Date: September 20, 2020
  • Revised Date: November 24, 2021
  • Q235 carbon steel/304 stainless steel clad plate was fabricated by non-vacuum rolling asymmetric billet with different total reductions (28%-70%).The microstructure, inclusion morphology, hardness and shear strength at interfaces of the clad plate were studied, and the competitive effects of inclusion and decarburization layer on the interface bonding strength were discussed.The results show that with increasing total rolling reduction, the inclusions at the interface of the clad plate changed from concentrated lump to uniform granular.When the total rolling reduction increased from 28% to 47%, the interface inclusion was the main factor affecting the bonding strength; increasing the rolling reduction was beneficial to improve the interface bonding strength.When the rolling reduction increased from 47% to 70%, the grain size on stainless steel sides decreased sharply, the thickness of decarburization layer at carbon steel side increased, and the interface bonding strength decreased; the decarburization layer become the dominant factor affecting the bonding strength.The competitive effects of interface inclusions and decarburization layers on bonding strength could be balanced by controlling the rolling reduction reasonably.
  • [1]
    孙浩,王克鲁.不锈钢复合板生产方法和制备技术的探讨[J].上海金属,2005,27(1):50-54.

    SUN H,WANG K L.Discussion on the production method and manufacturing technology of clad plate of stainless steel[J].Shanghai Metals,2005,27(1):50-54.
    [2]
    陈燕俊.贵金属层叠复合材料的制备工艺与界面研究[D].杭州:浙江大学,2001.

    CHEN Y J.The processing techniques and interface research of precious metal layered clad materials[D].Hangzhou:Zhejiang University,2001.
    [3]
    何康生,曹雄夫.异种金属焊接[M].北京:机械工业出版社,1986:109-129.

    HE K S,CAO X F.Dissimilar metal welding [M].Beijing:China Machine Press,1986:109-129.
    [4]
    李永松,沈怡琳.不锈钢复合板制作新工艺及市场前景的研究[J].广西机械,2001(4):34-36.

    LI Y S,SHEN Y L.New process for fabricating stainless steel clad plate and marketing prospect[J].Guangxi Machinery,2001(4):34-36.
    [5]
    马志新,胡捷,李德富,等.层状金属复合板的研究和生产现状[J].稀有金属,2003,27(6):799-803.

    MA Z X,HU J,LI D F,et al.Overview of research and manufacture of layer-metal clad plate[J].Chinese Journal of Rare Metals,2003,27(6):799-803.
    [6]
    ZHU Z C,HE Y,ZHANG X J,et al.Effect of interface oxides on shear properties of hot-rolled stainless steel clad plate[J].Materials Science and Engineering:A,2016,669:344-349.
    [7]
    丁海民,范孝良,王进峰,等.热轧复合不锈钢-碳钢复合板界面特征[J].材料热处理学报,2011,32(11):18-22.

    DING H M,FAN X L,WANG J F,et al.Interface characterization of hot-rolled stainless steel/carbon steel clad[J].Transactions of Materials and Heat Treatment,2011,32(11):18-22.
    [8]
    蒋君.真空热轧复合不锈钢复合板的组织性能研究[D].沈阳:东北大学,2014. JIANG J.Microstructure and mechanical property of stainless steel clad plate made by vacuum hot roll-cladding[D].Shenyang:Northeastern University,2014.
    [9]
    谢广明,骆宗安,王光磊,等.真空轧制不锈钢复合板的组织和性能[J].东北大学学报(自然科学版),2011,32(10):1398-1401.

    XIE G M,LUO Z A,WANG G L,et al.Microstructure and properties of stainless steel clad plate by vacuum rolling cladding[J].Journal of Northeastern University (Natural Science),2011,32(10):1398-1401.
    [10]
    马兴旺.真空热轧复合不锈钢/管线钢复合板的工艺研究[D].沈阳:东北大学,2015. MA X W.Process research on vacuum hot roll-clad stainless steel/pipeline steel[D].Shenyang:Northeastern University,2015.
    [11]
    李龙,张心金,祝志超,等.真空热轧不锈钢复合板界面结合行为的研究[J].材料与冶金学报,2014,13(1):46-50.

    LI L,ZHANG X J,ZHU Z C,et al.Investigation on bonding of stainless steel clad plate by vacuum hot rolling[J].Journal of Materials and Metallurgy,2014,13(1):46-50.
    [12]
    安朴艳.层状金属复合板生产方法专利技术综述[J].中国发明与专利,2019,16(增刊2):100-106.

    AN P Y.Summary of patent technology for production methods of layered metal clad sheet[J].China Invention & Patent,2019,16(S2):100-106.
    [13]
    李志强.桥梁用不锈钢复合板的开发与应用研究[D].秦皇岛:燕山大学,2018.

    LI Z Q.The development and application of stainless steel clad plates for bridges[D].Qinhuangdao:Yanshan University,2018.
    [14]
    王光磊.真空热轧复合界面夹杂物的生成演变机理与工艺控制研究[D].沈阳:东北大学,2013. WANG G L.Research on interface inclusions' evolution mechanism and process control of vacuum hot roll-cladding[D].Shenyang:Northeastern University,2013.
    [15]
    王泽鹏.轧制工艺对热轧Q235B/304L不锈钢复合板组织性能的影响[D].鞍山:辽宁科技大学,2016.

    WANG Z P.Effect of rolling process on microstructure and mechanical properties of Q235B/304L stainless steel clad plates[D].Anshan:University of Science and Technology Liaoning,2016.
    [16]
    董珂.2205/Q235热轧复合界面与不锈钢基体微观结构分析[D].秦皇岛:燕山大学,2017.

    DONG K.Microstructure analysis of 2205/Q235 hot rolling bonding interface and duplex stainless steel[D].Qinhuangdao:Yanshan University,2017.
    [17]
    金贺荣,韩民峰,段昌新.压下率对316L/EH40复合板界面微观形貌的影响[J].钢铁,2019,54(12):62-69.

    JIN H R,HAN M F,DUAN C X.Effect of reduction rates on interfacial microstructure morphologies of 316L/EH40 clad plate[J].Iron & Steel,2019,54(12):62-69.
    [18]
    于涛.不锈钢复合板界面碳化物析出及其控制[D].鞍山:辽宁科技大学,2019.

    YU T.Carbide precipitation and control of stainless steel clad plate interface[D].Anshan:University of Science and Technology Liaoning,2019.
    [19]
    梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社,1993:49.

    LIANG Y J, CHE Y C.Handbook of inorganic thermodynamics data [M].Shenyang:Northeast University Press,1993:49.
    [20]
    张朝阳.TA2钛/Q345钢爆炸焊接界面四点弯曲行为研究[D].南昌:南昌大学, 2019. ZHANG C Y.Research on four-point bending behavior of explosive welding interface of TA2 titanium /Q345 steel [D].Nanchang:Nanchang University, 2019.
    [21]
    张勇明,白月香.低碳钢变形奥氏体动态再结晶行为及组织演变[J].热加工工艺,2012,41(4):45-48.

    ZHANG Y M,BAI Y X.Austenite dynamic recrystallization and microstructure evolution of low carbon steel[J].Hot Working Technology,2012,41(4):45-48.
    [22]
    熊辉辉.钢中碳化物析出及其界面行为的第一性原理研究[D].上海:上海大学,2019. XIONG H H.First-principles study on the precipitation and interface behavior of carbides in steel[D].Shanghai:Shanghai University,2019.
    [23]
    李维娟,王国栋,刘相华.低碳钢的晶粒细化与碳化物析出[C]//2001中国钢铁年会论文集.北京:冶金工业出版社,2001:921-924.

    LI W J, WANG G D, LIU X H.Grain refinement and carbide precipitation of low carbon steel[C]//2001 China Steel proceedings.Beijing:Metallurgical Industry Press, 2001:921-924.
    [24]
    王震,叶静静,张庆安,等.304/Q235B热轧复合板界面的显微组织特征[J].安徽工业大学学报(自然科学版),2019,36(2):103-107.

    WANG Z,YE J J,ZHANG Q A,et al.Microstructure characteristics of interface in hot-rolled 304/Q235B clad plate[J].Journal of Anhui University of Technology (Natural Science),2019,36(2):103-107.
    [25]
    吴健栋,蔡志鹏,潘际銮,等.疲劳裂纹扩展门槛值的影响因素综述[J].热力透平,2013,42(2):84-89.

    WU J D,CAI Z P,PAN J L,et al.Overview of influencing factors of fatigue crack growth threshold[J].Thermal Turbine,2013,42(2):84-89.
    [26]
    王璞,董建新,韩一纯,等.组织特征对GH864合金裂纹扩展行为的影响[J].机械工程学报,2009,45(5):79-84.

    WANG P,DONG J X,HAN Y C,et al.Microstructure and crack propagation behavior of GH864 alloy[J].Journal of Mechanical Engineering,2009,45(5):79-84.
    [27]
    李继红,谢威威,杨军,等.钛/钢复合板熔化焊接头的组织和性能[J].金属热处理,2016,41(5):48-52.

    LI J H,XIE W W,YANG J,et al.Microstructure and properties of melting welded joint of Ti /steel clad plates[J].Heat Treatment of Metals,2016,41(5):48-52.

Catalog

    Article views (12) PDF downloads (2) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return