• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
ZHANG Shanglin, XUAN Fuzhen, QIU Yang, XIE Guofu, LI Guodong. Cyclic Deformation Behavior of P92 Steel under Creep-Fatigue Interaction[J]. Materials and Mechanical Engineering, 2022, 46(5): 36-41. DOI: 10.11973/jxgccl202205006
Citation: ZHANG Shanglin, XUAN Fuzhen, QIU Yang, XIE Guofu, LI Guodong. Cyclic Deformation Behavior of P92 Steel under Creep-Fatigue Interaction[J]. Materials and Mechanical Engineering, 2022, 46(5): 36-41. DOI: 10.11973/jxgccl202205006

Cyclic Deformation Behavior of P92 Steel under Creep-Fatigue Interaction

More Information
  • Received Date: February 06, 2021
  • Revised Date: March 30, 2022
  • Creep-fatigue test was conducted on P92 steel at 625℃. The effects of strain amplitude (0.4%-1.4%) and holding time (30-300 s) on cyclic deformation behavior of P92 steel were analyzed, and micro-mechanism under creep-fatigue interaction was discussed and compared by low-cycle fatigue tests. The results show that creep-fatigue interaction caused the transformation from non-Masing property to Masing property of P92 steel, and stress relaxation during holding time led to accelerated cyclic softening under creep-fatigue loading. During fatigue process, the microstructure of P92 steel changed inhomogeneously, the dislocation density decreased, and finally an elongated subgrain structure was formed. During creep-fatigue process, the microstructure change and dislocation density decrease of P92 steel were more uniform and significant, and finally equiaxed subgrains or dislocation cell structures were formed, accompanied by the coarsening of precipitates.
  • [1]
    涂善东,轩福贞.高温承压设备结构完整性技术[J].压力容器,2005,22(11):39-47.

    TU S T,XUAN F Z.Structural integrity technology for high temperature pressurized equipment[J].Pressure Vessel Technology,2005,22(11):39-47.
    [2]
    HE J. High temperature performance of materials for future power plants[D]. Stockholm:KTH Royal Institute of Technology, 2016.
    [3]
    ZHANG X C,TU S T,XUAN F Z.Creep-fatigue endurance of 304 stainless steels[J].Theoretical and Applied Fracture Mechanics,2014,71:51-66.
    [4]
    HORMOZI R,BIGLARI F,NIKBIN K.Experimental and numerical creep-fatigue study of Type 316 stainless steel failure under high temperature LCF loading condition with different hold time[J].Engineering Fracture Mechanics,2015,141:19-43.
    [5]
    CARROLL L J,CABET C,CARROLL M C,et al.The development of microstructural damage during high temperature creep-fatigue of a nickel alloy[J].International Journal of Fatigue,2013,47:115-125.
    [6]
    CHEN X,YANG Z Q,SOKOLOV M A,et al.Effect of creep and oxidation on reduced fatigue life of Ni-based alloy 617 at 850℃[J].Journal of Nuclear Materials,2014,444(1/2/3):393-403.
    [7]
    LORD D C,COFFIN L F.Low cycle fatigue hold time behavior of cast rené 80[J].Metallurgical Transactions,1973,4(7):1647-1654.
    [8]
    CHAUHAN A,STRAßBERGER L,FVHRER U,et al.Creep-fatigue interaction in a bimodal 12Cr-ODS steel[J].International Journal of Fatigue,2017,102:92-111.
    [9]
    FOURNIER B,SAUZAY M,CAȃS C,et al.Creep-fatigue interactions in a 9 pct Cr-1 pct Mo martensitic steel:Part I.mechanical test results[J].Metallurgical and Materials Transactions A,2009,40(2):321-329.
    [10]
    MAIER H J,GABOR P,GUPTA N,et al.Cyclic stress-strain response of ultrafine grained copper[J].International Journal of Fatigue,2006,28(3):243-250.
    [11]
    PLUMTREE A,ABDEL-RAOUF H A.Cyclic stress-strain response and substructure[J].International Journal of Fatigue,2001,23(9):799-805.
    [12]
    FOURNIER B,DALLE F,SAUZAY M,et al.Comparison of various 9-12% Cr steels under fatigue and creep-fatigue loadings at high temperature[J].Materials Science and Engineering:A,2011,528(22/23):6934-6945.
    [13]
    FOURNIER B,SAUZAY M,BARCELO F,et al.Creep-fatigue interactions in a 9 pct Cr-1 pct Mo martensitic steel:Part II.microstructural evolutions[J].Metallurgical and Materials Transactions A,2009,40(2):330-341.2022年"金属材料强韧均衡研究"专题征稿启事金属材料是使用最广泛、频繁的材料之一,在交通运输、建筑结构、武器装备等领域都发挥着不可替代的作用。强度和塑韧性是金属材料最重要的两个力学性能指标。通常,强度与塑韧性存在倒置现象,即强度高的材料韧性差,韧性好的材料强度低;这种倒置关系已经成为材料发展的一个瓶颈问题。如何在保证强度的基础上提升材料的韧性,成为金属材料研究领域的一个热点。金属传统强化手段大多以牺牲塑性为代价来提高材料强度。目前研究表明,可通过多种方法在不同的长度尺度上采用多个塑性和增韧机制得到同时具备高强度和良好韧性的材料。包括设计具有"软区"和"硬区"两种结构单元的新型异构材料;在纳微结构采用硬材料的基础上,限制非弹性变形以减少局部高应力从而获得内在韧性;在大长度尺度上增加外在增韧机制等。《机械工程材料》杂志将在2022年第11期推出"金属材料强韧均衡研究"专题报道,热忱欢迎相关领域科研技术人员踊跃投稿。本专题报道范围包括但不限于金属材料强韧化设计理论(模型、数据驱动等)、金属材料强韧均衡制造与调控、面向工程应用的金属材料强韧成形方法、金属材料强韧化测试方法与理论等。综述性文章要求能总结上述领域的研究现状并提出前瞻性的发展方向;研究性文章要求能反映上述领域的最新研究成果,数据详实、方法新颖、结果可靠;模拟类文章要求有相应的试验验证;应用性文章要求具有实际推广价值,研究要有系统性,有理论分析。请按照本刊论文模板(在投稿主页上下载)撰写,择优录用,优先发表。投稿网址: http://www.mat-test.com/Submission联系电话:021-65541496;021-65556775-368E-mail:mem@mat-test.com;matmem@mat-test.com《机械工程材料》编辑部

Catalog

    Article views (3) PDF downloads (2) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return