• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
LI Haoran, LIU Yan, YUAN Ming, YANG Jinjing, LIU Xuejian, HUANG Zhengren. Preparation and Properties of La2O3-doped Y2O3 CeramicCrucible Material for TiAl Alloy Melting[J]. Materials and Mechanical Engineering, 2022, 46(6): 1-6. DOI: 10.11973/jxgccl202206001
Citation: LI Haoran, LIU Yan, YUAN Ming, YANG Jinjing, LIU Xuejian, HUANG Zhengren. Preparation and Properties of La2O3-doped Y2O3 CeramicCrucible Material for TiAl Alloy Melting[J]. Materials and Mechanical Engineering, 2022, 46(6): 1-6. DOI: 10.11973/jxgccl202206001

Preparation and Properties of La2O3-doped Y2O3 CeramicCrucible Material for TiAl Alloy Melting

More Information
  • Received Date: January 26, 2021
  • Revised Date: May 25, 2022
  • Y2O3 ceramics doped with different mass fraction (0-15%)of La2O3 were prepared by solid phase doping and vacuum sintering. The microstructure and flexural strength of the ceramics were studied. The melting test of TiAl alloy was carried out with the ceramic, and the interface microstructure, interface reaction type and oxygen content of alloy melt were analyzed. The results show that with increasing La2O3 doping content, the open porosity of La2O3-doped Y2O3 ceramics decreased first and then increased, and the flexural strength increased first and then decreased. When the mass fraction of La2O3 doping was 10%, the ceramics had the smallest open porosity of 0.45% and the highest flexural strength of 104 MPa. After melting TiAl alloy with 10wt% La2O3-doped Y2O3 ceramics, a transition layer with an average thickness of 2.10 μm appeared at the interface, and the phase of the transition layer was YLaO3. A physical dissolution reaction occurred between ceramic and alloy. The oxygen mass fraction of alloy melt was 2 400 mg·kg-1 and was only about 70% of that of ceramics without doping La2O3.
  • [1]
    KIM Y W.Ordered intermetallic alloys,part III:Gamma titanium aluminides[J].JOM,1994,46(7):30-39.
    [2]
    CLEMENS H, KESTLER H.Processing and applications of intermetallic γ-TiAl-based alloys[J]. Advanced Engineering Materials, 2000,2(9):551-570.
    [3]
    李成功.航空航天材料[M].北京:国防工业出版社,2002. LI C G. Aerospace Materials[M]. Beijing:National Defense Industry Press, 2002.
    [4]
    陈玉勇,苏勇君,孔凡涛.TiAl金属间化合物制备技术的研究进展[J].稀有金属材料与工程,2014,43(3):757-762.

    CHEN Y Y, SU Y J, KONG F T. Research progress in preparation of TiAl interemetallic based compound[J]. Rare Metal Materials and Engineering, 2014, 43(3):757-762.
    [5]
    刘娣,张利军,米磊,等.TiAl合金的制备及应用现状[J].钛工业进展,2014,31(4):11-15.

    LIU D, ZHANG L J, MI L, et al. Preparation and application status of TiAl alloy[J]. Titanium Industry Progress, 2014, 31(4):11-15.
    [6]
    黄淑梅,韩明臣.钛的悬浮熔炼与铸造[J].金属学报, 2002, 38(增刊):334-336.

    HUANG S M, HAN M C. Levilation melting and cast of titanium[J]. Acta Metallurgica Sinica, 2002, 38(S):334-336.
    [7]
    贾均.钛铝合金及其熔炼技术[J].特种铸造及有色合金,1998,18(4):8-10.

    JIA J. The melting techniques for TiAl alloys[J]. Special Casting&Nonferrous Alloys, 1998, 18(4):8-10.
    [8]
    黄金昌.等离子电弧熔炼钛铝金属间化合物[J].钛工业进展,1994,11(5):1-1.

    HUANG J C. Plasma arc melting TiAl intermetallics[J]. Titanium Industry Progress, 1994, 11(5):1-1.
    [9]
    KUANG J P, HARDING R A, CAMPBELL J. Investigation into refractories as crucible and mould materials for melting and casting γ-TiAl alloys[J]. Materials Science and Technology, 2000, 16(9):1007-1016.
    [10]
    EATESAMI D, HADAVI M M, HABIBOLLAHZADE A. Melting of γ-TiAl in the alumina crucible[J]. Russian Journal of Non-Ferrous Metals, 2009, 50(4):363-367.
    [11]
    GOMES F, BARBOSA J, RIBEIRO C S. Induction melting of γ-TiAl in CaO crucibles[J]. Intermetallics, 2008, 16(11/12):1292-1297.
    [12]
    TETSUI T, KOBAYASHI T, MORI T, et al. Evaluation of yttria applicability as a crucible for induction melting of TiAl alloy[J]. Materials Transactions, 2010, 51(9):1656-1662.
    [13]
    TETSUI T, KOBAYASHI T, KISHIMOTO A, et al. Structural optimization of an yttria crucible for melting TiAl alloy[J]. Intermetallics, 2012, 20(1):16-23.
    [14]
    ZHANG L, HUANG Z, PAN W. High transparency Nd:Y2O3 ceramics prepared with La2O3 and ZrO2 additives[J]. Journal of the American Ceramic Society, 2014:1-5.
    [15]
    HUANG Y, JIANG D, ZHANG J, et al. Fabrication of transparent lanthanum-doped yttria ceramics by combination of two-step sintering and vacuum sintering[J]. Journal of the American Ceramic Society, 2009, 92(12):2883-2887.
    [16]
    COUTURES J, FOEX M. Etude h Haute temperature du diagramme d'equilibre du systme form par le sesquioxyde de lanthane avec le sesquioxyde d'yttrium[J]. Journal of the Solid State Chemistry 11, 1974:294-300.
    [17]
    HUMPHREYS C J. The significance of Bragg's law in electron diffraction and microscopy, and Bragg's second law[J]. Acta Crystallographica Section A, 2013, 69:45-50.
    [18]
    HUANG Y H, JIANG D L, ZHANG J X, et al. Precipitation synthesis and sintering of lanthanum doped yttria transparent ceramics[J]. Optical Materials, 2009, 31(10):1448-1453.
    [19]
    IVANOV M, KOPYLOV Y, KRAVCHENKO V, et al. Sintering and optical quality of highly transparent Yb-doped yttrium lanthanum oxide ceramics[J]. Physica Status Solidi C, 2013,10(6):940-944.
    [20]
    IVANOV M, KOPYLOV Y, KRAVCHENKO V, et al. Highly transparent ytterbium doped yttrium lanthanum oxide ceramics[J]. Journal of Rare Earths, 2014, 32(3):254-258.
    [21]
    IVANOV M, KOPYLOV Y, KRAVCHENKO V, et al. Optical,luminescent and laser properties of highly transparent ytterbium doped yttrium lanthanum oxide ceramics[J]. Optical Materials, 2015, 50:15-20.
    [22]
    BALABANOV S S, BYKOV Y V, EGOROV S V, et al. Yb\:(YLa)2O3 laser ceramics produced by microwave sintering[J]. Quantum Electronics, 2013, 43(4):396-400.
    [23]
    DURAUD J P, JOLLET F, THROMAT N, et al. Nonstoichiometry in pure and Zr-doped yttria ceramics:An EXAFS and XPS study[J]. Journal of the American Ceramic Society, 1990, 73(8):2467-2473.
    [24]
    LI X K, MAO X J, FENG M H, et al. Optical absorption and mechanism of vacuum-sintered ZrO2-doped Y2O3 ceramics[J]. Journal of the European Ceramic Society, 2016, 36(16):4181-4184.
    [25]
    CAROLAN D, IVANKOVI AC'G A, MURPHY N. Thermal shock resistance of polycrystalline cubic boron nitride[J]. Journal of the European Ceramic Society, 2012, 32(10):2581-2586.
    [26]
    EOM J H, KIM Y W. Effect of initial α-phase content on microstructure and flexural strength of macroporous silicon carbide ceramics[J]. Metals and Materials International, 2012, 18(2):379-383.
    [27]
    YAO D X, ZENG Y P, ZUO K H, et al. Porous Si3N4 ceramics prepared via nitridation of Si powder with Si3N4 filler and postsintering[J]. International Journal of Applied Ceramic Technology, 2012, 9(2):239-245.
    [28]
    何敬晖,秦松岩,玄真武,等.不同晶粒尺寸对CVD金刚石膜机械性能的影响[J].超硬材料工程,2009,21(5):5-7.

    HE J H, QIN S Y, XUAN Z W, et al. Influence of different grain size on mechanical properties of CVD diamond film[J]. Superhard Material Engineering, 2009, 21(5):5-7.
    [29]
    王文瀚,李晓云,丘泰.掺杂MgO和La2O3对Al2O3陶瓷性能的影响[J].电子元件与材料,2011,30(7):9-13.

    WANG W H, LI X Y, QIU T. Effect of MgO and La2O3 doping on properties of Al2O3 ceramics[J]. Electronic Components and Materials, 2011, 30(7):9-13.
    [30]
    CHEN P L, CHEN I W. Grain boundary mobility in Y2O3:Defect mechanism and dopant effects[J]. Journal of the American Ceramic Society, 1996, 79(7):1801-1809.

Catalog

    Article views (0) PDF downloads (2) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return